These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39375036)
1. MRI at low field: A review of software solutions for improving SNR. Ayde R; Vornehm M; Zhao Y; Knoll F; Wu EX; Sarracanie M NMR Biomed; 2024 Oct; ():e5268. PubMed ID: 39375036 [TBL] [Abstract][Full Text] [Related]
2. Efficient imaging using spiral acquisitions on a portable 50-mT MR head scanner. Zhang Y; He W; Yang L; Xuan L; Wu J; He Y; Guo Y; Xu Z NMR Biomed; 2023 Oct; 36(10):e4988. PubMed ID: 37381057 [TBL] [Abstract][Full Text] [Related]
3. Denoising magnetic resonance spectroscopy (MRS) data using stacked autoencoder for improving signal-to-noise ratio and speed of MRS. Wang J; Ji B; Lei Y; Liu T; Mao H; Yang X Med Phys; 2023 Dec; 50(12):7955-7966. PubMed ID: 37947479 [TBL] [Abstract][Full Text] [Related]
4. Low-Field-Strength Body MRI: Challenges and Opportunities at 0.55 T. Shetty AS; Ludwig DR; Ippolito JE; Andrews TJ; Narra VR; Fraum TJ Radiographics; 2023 Dec; 43(12):e230073. PubMed ID: 37917537 [TBL] [Abstract][Full Text] [Related]
5. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data. Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277 [TBL] [Abstract][Full Text] [Related]
6. High-resolution diffusion-weighted imaging at 7 Tesla: Single-shot readout trajectories and their impact on signal-to-noise ratio, spatial resolution and accuracy. Feizollah S; Tardif CL Neuroimage; 2023 Jul; 274():120159. PubMed ID: 37150332 [TBL] [Abstract][Full Text] [Related]
7. Utility of respiratory-navigator-rejected k-space lines for improved signal-to-noise ratio in three-dimensional cardiac MR. Akçakaya M; Shaw JL; Hauser TH; Nezafat R Magn Reson Med; 2013 Nov; 70(5):1332-9. PubMed ID: 23233381 [TBL] [Abstract][Full Text] [Related]
8. Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Koonjoo N; Zhu B; Bagnall GC; Bhutto D; Rosen MS Sci Rep; 2021 Apr; 11(1):8248. PubMed ID: 33859218 [TBL] [Abstract][Full Text] [Related]
9. Aperture-patch sandwich metasurface for magnetic field enhancement in 1.5 T MRI. Das P; Gupta J; Sikdar D; Bhattacharjee R Magn Reson Imaging; 2023 Jul; 100():1-9. PubMed ID: 36924809 [TBL] [Abstract][Full Text] [Related]
10. Fast submillimeter diffusion MRI using gSlider-SMS and SNR-enhancing joint reconstruction. Haldar JP; Liu Y; Liao C; Fan Q; Setsompop K Magn Reson Med; 2020 Aug; 84(2):762-776. PubMed ID: 31919908 [TBL] [Abstract][Full Text] [Related]
11. Electromagnetic interference elimination via active sensing and deep learning prediction for radiofrequency shielding-free MRI. Zhao Y; Xiao L; Liu Y; Leong AT; Wu EX NMR Biomed; 2024 Jul; 37(7):e4956. PubMed ID: 37088894 [TBL] [Abstract][Full Text] [Related]
12. Sodium magnetic resonance imaging using ultra-short echo time sequences with anisotropic resolution and uniform k-space sampling. Konstandin S; Krämer P; Günther M; Schad LR Magn Reson Imaging; 2015 Apr; 33(3):319-27. PubMed ID: 25527394 [TBL] [Abstract][Full Text] [Related]
13. Super resolution using sparse sampling at portable ultra-low field MR. Donnay C; Okar SV; Tsagkas C; Gaitán MI; Poorman M; Reich DS; Nair G Front Neurol; 2024; 15():1330203. PubMed ID: 38854960 [TBL] [Abstract][Full Text] [Related]
14. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model. Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585 [TBL] [Abstract][Full Text] [Related]
15. Signal-to-noise ratio evaluation of magnetic resonance images in the presence of an ultrasonic motor. Shokrollahi P; Drake JM; Goldenberg AA Biomed Eng Online; 2017 Apr; 16(1):45. PubMed ID: 28410615 [TBL] [Abstract][Full Text] [Related]
16. SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI. Tian Q; Li Z; Fan Q; Polimeni JR; Bilgic B; Salat DH; Huang SY Neuroimage; 2022 Jun; 253():119033. PubMed ID: 35240299 [TBL] [Abstract][Full Text] [Related]
17. [Effects of Image-based Noise Reduction Software on Magnetic Resonance Imaging]. Yamamuro O; Tsukijima M Nihon Hoshasen Gijutsu Gakkai Zasshi; 2021; 77(12):1416-1423. PubMed ID: 34924478 [TBL] [Abstract][Full Text] [Related]
18. Denoising MRI using spectral subtraction. Erturk MA; Bottomley PA; El-Sharkawy AM IEEE Trans Biomed Eng; 2013 Jun; 60(6):1556-62. PubMed ID: 23322757 [TBL] [Abstract][Full Text] [Related]
19. Accuracy and precision in super-resolution MRI: Enabling spherical tensor diffusion encoding at ultra-high b-values and high resolution. Vis G; Nilsson M; Westin CF; Szczepankiewicz F Neuroimage; 2021 Dec; 245():118673. PubMed ID: 34688898 [TBL] [Abstract][Full Text] [Related]
20. Improvement of 2D cine image quality using 3D priors and cycle generative adversarial network for low field MRI-guided radiation therapy. Dong Y; Yang F; Wen J; Cai J; Zeng F; Liu M; Li S; Wang J; Ford JC; Portelance L; Yang Y Med Phys; 2024 May; 51(5):3495-3509. PubMed ID: 38043123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]