These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39375036)
41. High-field mr diffusion-weighted image denoising using a joint denoising convolutional neural network. Wang H; Zheng R; Dai F; Wang Q; Wang C J Magn Reson Imaging; 2019 Dec; 50(6):1937-1947. PubMed ID: 31012226 [TBL] [Abstract][Full Text] [Related]
42. Effects of proximity and noise level of phased array coil elements on overall signal-to-noise in parallel MR spectroscopy. Fleischer CC; Zhong X; Mao H Magn Reson Imaging; 2018 Apr; 47():125-130. PubMed ID: 29217493 [TBL] [Abstract][Full Text] [Related]
43. Mapping of magnetic resonance imaging's transverse relaxation time at low signal-to-noise ratio using Bloch simulations and principal component analysis image denoising. Stern N; Radunsky D; Blumenfeld-Katzir T; Chechik Y; Solomon C; Ben-Eliezer N NMR Biomed; 2022 Dec; 35(12):e4807. PubMed ID: 35899528 [TBL] [Abstract][Full Text] [Related]
44. Attention-Based MultiOffset Deep Learning Reconstruction of Chemical Exchange Saturation Transfer (AMO-CEST) MRI. Yang Z; Shen D; Chan KWY; Huang J IEEE J Biomed Health Inform; 2024 Aug; 28(8):4636-4647. PubMed ID: 38776205 [TBL] [Abstract][Full Text] [Related]
45. Optimal sampling for "Noquist" reduced-data cine magnetic resonance imaging. Moratal D; Thomas Dixon W; Ramamurthy S; Lerakis S; James Parks W; Brummer ME Med Phys; 2013 Jan; 40(1):012302. PubMed ID: 23298107 [TBL] [Abstract][Full Text] [Related]
46. Density-weighted concentric circle trajectories for high resolution brain magnetic resonance spectroscopic imaging at 7T. Hingerl L; Bogner W; Moser P; Považan M; Hangel G; Heckova E; Gruber S; Trattnig S; Strasser B Magn Reson Med; 2018 Jun; 79(6):2874-2885. PubMed ID: 29106742 [TBL] [Abstract][Full Text] [Related]
47. MO-D-213CD-01: Cartesian Methods for Rapid Time-Resolved MR Angiography. Riederer S Med Phys; 2012 Jun; 39(6Part21):3868-3869. PubMed ID: 28518234 [TBL] [Abstract][Full Text] [Related]
48. Improving local SNR of a single-channel 54.6 mT MRI system using additional LC-resonator. Zhang Y; Guo Y; Kong X; Zeng P; Yin H; Wu J; He Y; Xu Z J Magn Reson; 2022 Jun; 339():107215. PubMed ID: 35421711 [TBL] [Abstract][Full Text] [Related]
49. k-space weighted image average (KWIA) for ASL-based dynamic MR angiography and perfusion imaging. Zhao C; Shao X; Yan L; Wang DJJ Magn Reson Imaging; 2022 Feb; 86():94-106. PubMed ID: 34871715 [TBL] [Abstract][Full Text] [Related]
50. Mono-planar T-Hex: Speed and flexibility for high-resolution 3D imaging. Engel M; Kasper L; Wilm B; Dietrich B; Patzig F; Vionnet L; Pruessmann KP Magn Reson Med; 2022 Jan; 87(1):272-280. PubMed ID: 34398985 [TBL] [Abstract][Full Text] [Related]
51. Deep learning-based single image super-resolution for low-field MR brain images. de Leeuw den Bouter ML; Ippolito G; O'Reilly TPA; Remis RF; van Gijzen MB; Webb AG Sci Rep; 2022 Apr; 12(1):6362. PubMed ID: 35430586 [TBL] [Abstract][Full Text] [Related]
52. Minimum SNR and acquisition for bias-free estimation of fractional anisotropy in diffusion tensor imaging - a comparison of two analytical techniques and field strengths. Seo Y; Wang ZJ; Morriss MC; Rollins NK Magn Reson Imaging; 2012 Oct; 30(8):1123-33. PubMed ID: 22819179 [TBL] [Abstract][Full Text] [Related]
53. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network. Cui J; Gong K; Han P; Liu H; Li Q Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390 [TBL] [Abstract][Full Text] [Related]
54. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging. Hokamura M; Nakaura T; Yoshida N; Uetani H; Shiraishi K; Kobayashi N; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Miyamoto T; Hirai T Eur J Radiol; 2024 Sep; 178():111587. PubMed ID: 39002269 [TBL] [Abstract][Full Text] [Related]
55. MRI super-resolution using similarity distance and multi-scale receptive field based feature fusion GAN and pre-trained slice interpolation network. U N; P M A Magn Reson Imaging; 2024 Jul; 110():195-209. PubMed ID: 38653336 [TBL] [Abstract][Full Text] [Related]
56. Quantitative analysis of spatial averaging effect on chemical shift imaging SNR and noise coherence with k-space sampling schemes. Lee BY; Zhu XH; Chen W Magn Reson Imaging; 2019 Jul; 60():85-92. PubMed ID: 30943436 [TBL] [Abstract][Full Text] [Related]
57. Modern Low-Field MRI of the Musculoskeletal System: Practice Considerations, Opportunities, and Challenges. Khodarahmi I; Keerthivasan MB; Brinkmann IM; Grodzki D; Fritz J Invest Radiol; 2023 Jan; 58(1):76-87. PubMed ID: 36165841 [TBL] [Abstract][Full Text] [Related]
58. Sliding window prior data assisted compressed sensing for MRI tracking of lung tumors. Yip E; Yun J; Wachowicz K; Gabos Z; Rathee S; Fallone BG Med Phys; 2017 Jan; 44(1):84-98. PubMed ID: 28102958 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of a Deep Learning Reconstruction for High-Quality T2-Weighted Breast Magnetic Resonance Imaging. Allen TJ; Henze Bancroft LC; Unal O; Estkowski LD; Cashen TA; Korosec F; Strigel RM; Kelcz F; Fowler AM; Gegios A; Thai J; Lebel RM; Holmes JH Tomography; 2023 Oct; 9(5):1949-1964. PubMed ID: 37888744 [TBL] [Abstract][Full Text] [Related]
60. Assessment of a high-SNR chemical-shift-encoded MRI with complex reconstruction for proton density fat fraction (PDFF) estimation overall and in the low-fat range. Park CC; Hooker C; Hooker JC; Bass E; Haufe W; Schlein A; Covarrubias Y; Heba E; Bydder M; Wolfson T; Gamst A; Loomba R; Schwimmer J; Hernando D; Reeder SB; Middleton M; Sirlin CB; Hamilton G J Magn Reson Imaging; 2019 Jan; 49(1):229-238. PubMed ID: 29707848 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]