These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64. [3 Tesla MRI: successful results with higher field strengths]. Schmitt F; Grosu D; Mohr C; Purdy D; Salem K; Scott KT; Stoeckel B Radiologe; 2004 Jan; 44(1):31-47. PubMed ID: 14997868 [TBL] [Abstract][Full Text] [Related]
65. Strategically Acquired Gradient Echo (STAGE) Imaging, part IV: Constrained Reconstruction of White Noise (CROWN) Processing as a Means to Improve Signal-to-Noise in STAGE Imaging at 3 Tesla. Haacke EM; Xu Q; Kokeny P; Gharabaghi S; Chen Y; Wu B; Liu Y; He N; Yan F Magn Reson Imaging; 2024 Apr; 107():55-68. PubMed ID: 38181834 [TBL] [Abstract][Full Text] [Related]
66. Compartment-based reconstruction of 3D acquisition-weighted Tyler A; Ellis J; Lau JYC; Miller JJ; Bottomley PA; Rodgers CT; Tyler DJ; Valkovič L NMR Biomed; 2023 Apr; 36(9):e4950. PubMed ID: 37046414 [TBL] [Abstract][Full Text] [Related]
67. Fast, high-quality, and unshielded 0.2 T low-field mobile MRI using minimal hardware resources. Li L; He Q; Wei S; Wang H; Wang Z; Wei Z; He H; Xiang C; Yang W MAGMA; 2024 Jul; ():. PubMed ID: 38967865 [TBL] [Abstract][Full Text] [Related]
68. Low-Field Magnetic Resonance Imaging. Klein HM Rofo; 2020 Jun; 192(6):537-548. PubMed ID: 32396945 [TBL] [Abstract][Full Text] [Related]
69. Deep Learning-Based Denoising in High-Speed Portable Reflectance Confocal Microscopy. Zhao J; Jain M; Harris UG; Kose K; Curiel-Lewandrowski C; Kang D Lasers Surg Med; 2021 Aug; 53(6):880-891. PubMed ID: 33891330 [TBL] [Abstract][Full Text] [Related]
70. Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain. Feuerriegel GC; Weiss K; Kronthaler S; Leonhardt Y; Neumann J; Wurm M; Lenhart NS; Makowski MR; Schwaiger BJ; Woertler K; Karampinos DC; Gersing AS Eur Radiol; 2023 Jul; 33(7):4875-4884. PubMed ID: 36806569 [TBL] [Abstract][Full Text] [Related]
72. Improved cine displacement-encoded MRI using balanced steady-state free precession and time-adaptive sensitivity encoding parallel imaging at 3 T. Kim D; Kellman P NMR Biomed; 2007 Oct; 20(6):591-601. PubMed ID: 17211867 [TBL] [Abstract][Full Text] [Related]
73. Susceptibility-weighted imaging at high-performance 0.5T magnetic resonance imaging system: Protocol considerations and experimental results. Qiu Y; Bai H; Chen H; Zhao Y; Luo H; Wu Z; Zhang Z Front Neurosci; 2022; 16():999240. PubMed ID: 36312037 [TBL] [Abstract][Full Text] [Related]
74. Small-animal MRI: signal-to-noise ratio comparison at 7 and 1.5 T with multiple-animal acquisition strategies. Beuf O; Jaillon F; Saint-Jalmes H MAGMA; 2006 Sep; 19(4):202-8. PubMed ID: 16957937 [TBL] [Abstract][Full Text] [Related]
75. Denoising Magnetic Resonance Spectroscopy (MRS) Data Using Stacked Autoencoder for Improving Signal-to-Noise Ratio and Speed of MRS. Wang J; Ji B; Lei Y; Liu T; Mao H; Yang X ArXiv; 2023 Mar; ():. PubMed ID: 37033456 [TBL] [Abstract][Full Text] [Related]
76. Scan-Specific Generative Neural Network for MRI Super-Resolution Reconstruction. Sui Y; Afacan O; Jaimes C; Gholipour A; Warfield SK IEEE Trans Med Imaging; 2022 Jun; 41(6):1383-1399. PubMed ID: 35020591 [TBL] [Abstract][Full Text] [Related]