BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 3937519)

  • 1. The regulation of exogenous NAD(P)H oxidation in spinach (Spinacia oleracea) leaf mitochondria by pH and cations.
    Edman K; Ericson I; Møller IM
    Biochem J; 1985 Dec; 232(2):471-7. PubMed ID: 3937519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A specific role for Ca2+ in the oxidation of exogenous NADH by Jerusalem-artichoke (Helianthus tuberosus) mitochondria.
    Møller IM; Johnston SP; Palmer JM
    Biochem J; 1981 Feb; 194(2):487-95. PubMed ID: 6796061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding and screening by cations and the effect on exogenous NAD(P)H oxidation in Neurospora crassa mitochondria.
    Møller IM; Schwitzguébel JP; Palmer JM
    Eur J Biochem; 1982 Mar; 123(1):81-8. PubMed ID: 6461553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge screening by cations affects the conformation of the mitochondrial inner membrane. A study of exogenous MAD(P)H oxidation in plant mitochondria.
    Møller IM; Palmer JM
    Biochem J; 1981 Jun; 195(3):583-8. PubMed ID: 7316973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic screening stimulates rate-limiting steps in mitochondrial electron transport.
    Møller IM; Kay CJ; Palmer JM
    Biochem J; 1984 Nov; 223(3):761-7. PubMed ID: 6095808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on the mitochondrial energy-linked and non-energy-linked transhydrogenation reactions.
    Galante YM; Lee Y; Hatefi Y
    J Biol Chem; 1980 Oct; 255(20):9641-6. PubMed ID: 7430091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of calcium ions and inhibitors on internal NAD(P)H dehydrogenases in plant mitochondria.
    Rasmusson AG; Møller IM
    Eur J Biochem; 1991 Dec; 202(2):617-23. PubMed ID: 1722151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.
    Palmer JM; Schwitzguébel JP; Møller IM
    Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of reduced nicotinamide adenine dinucleotide phosphate by plant mitochondria.
    Arron GP; Edwards GE
    Can J Biochem; 1979 Dec; 57(12):1392-9. PubMed ID: 44218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolated durum wheat and potato cell mitochondria oxidize externally added NADH mostly via the malate/oxaloacetate shuttle with a rate that depends on the carrier-mediated transport.
    Pastore D; Di Pede S; Passarella S
    Plant Physiol; 2003 Dec; 133(4):2029-39. PubMed ID: 14671011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct evidence for the presence of two external NAD(P)H dehydrogenases coupled to the electron transport chain in plant mitochondria.
    Roberts TH; Fredlund KM; Møller IM
    FEBS Lett; 1995 Oct; 373(3):307-9. PubMed ID: 7589489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The alternative respiratory pathway of the yeast Candida parapsilosis: oxidation of exogenous NAD(P)H.
    Camougrand NM; Cheyrou A; Henry MF; Guérin MG
    J Gen Microbiol; 1988 Dec; 134(12):3195-204. PubMed ID: 3269391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes.
    Cui K; Ma Q; Lu AY; Yang CS
    Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chelating agents and superoxide on human neutrophil NAD(P)H oxidation.
    Goetz MB; Proctor RA
    Anal Biochem; 1984 Feb; 137(1):230-5. PubMed ID: 6329025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlortetracycline and the transmembrane potential of the inner membrane of plant mitochondria.
    Møller IM; Kay CJ; Palmer JM
    Biochem J; 1986 Aug; 237(3):765-71. PubMed ID: 3800917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide generation by lipoxygenase in the presence of NADH and NADPH.
    Roy P; Roy SK; Mitra A; Kulkarni AP
    Biochim Biophys Acta; 1994 Sep; 1214(2):171-9. PubMed ID: 7918597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coenzyme site-directed mutants of photosynthetic A4-GAPDH show selectively reduced NADPH-dependent catalysis, similar to regulatory AB-GAPDH inhibited by oxidized thioredoxin.
    Sparla F; Fermani S; Falini G; Zaffagnini M; Ripamonti A; Sabatino P; Pupillo P; Trost P
    J Mol Biol; 2004 Jul; 340(5):1025-37. PubMed ID: 15236965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria.
    Antos-Krzeminska N; Jarmuszkiewicz W
    Protist; 2014 Sep; 165(5):580-93. PubMed ID: 25113830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.