These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 39375479)
1. Performance of the multi-U-style structure based flow field for polymer electrolyte membrane fuel cell. Qi W; Chen X; Zhang ZG; Ge S; Wang H; Deng R; Liu Z; Tuo J; Guo S; Cheng J Sci Rep; 2024 Oct; 14(1):23318. PubMed ID: 39375479 [TBL] [Abstract][Full Text] [Related]
2. Experimental and Numerical Study of Proton Exchange Membrane Fuel Cells with a Novel Compound Flow Field. Wang Y; Wang L; Ji X; Zhou Y; Wu M ACS Omega; 2021 Aug; 6(34):21892-21899. PubMed ID: 34497884 [TBL] [Abstract][Full Text] [Related]
3. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC). Suresh PV; Jayanti S Environ Sci Pollut Res Int; 2016 Oct; 23(20):20120-20130. PubMed ID: 27074933 [TBL] [Abstract][Full Text] [Related]
4. Influence and Optimization of Gas Diffusion Layer Porosity Distribution along the Flow Direction on the Performance of Proton Exchange Membrane Fuel Cells. Zhang J; Xuan D; Liu S; Chen C ACS Omega; 2024 Jan; 9(1):239-251. PubMed ID: 38222527 [TBL] [Abstract][Full Text] [Related]
5. Numerical Study on the Effect of an Improved Three-Partition Baffle Flow Field on Proton Exchange Membrane Fuel Cell Performance. Deng X; Zhang E; Lei J; Jia D; Liu Y; Shuchao HE ACS Omega; 2022 Nov; 7(47):42872-42882. PubMed ID: 36467955 [TBL] [Abstract][Full Text] [Related]
6. A Scalable and Robust Water Management Strategy for PEMFCs: Operando Electrothermal Mapping and Neutron Imaging Study. Xu L; Trogadas P; Zhou S; Jiang S; Wu Y; Rasha L; Kockelmann W; Yang JD; Neville T; Jervis R; Brett DJL; Coppens MO Adv Sci (Weinh); 2024 Sep; 11(36):e2404350. PubMed ID: 39052888 [TBL] [Abstract][Full Text] [Related]
7. Alternating Flow Field Design Improves the Performance of Proton Exchange Membrane Fuel Cells. Qin Z; Huo W; Bao Z; Tongsh C; Wang B; Du Q; Jiao K Adv Sci (Weinh); 2023 Feb; 10(4):e2205305. PubMed ID: 36470593 [TBL] [Abstract][Full Text] [Related]
8. Investigating the Effect of the Compensation Flow Fields on the Performance and Thermal Stress Distribution of a Typical Fuel Cell. Zhao Y; Hu C; Xu C; Cho HM; Chen D ACS Omega; 2024 Apr; 9(15):17458-17466. PubMed ID: 38645310 [TBL] [Abstract][Full Text] [Related]
9. Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell. Wilberforce T; Ijaodola O; Khatib FN; Ogungbemi EO; El Hassan Z; Thompson J; Olabi AG Sci Total Environ; 2019 Oct; 688():1016-1035. PubMed ID: 31726535 [TBL] [Abstract][Full Text] [Related]
10. Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review. Marappan M; Palaniswamy K; Velumani T; Chul KB; Velayutham R; Shivakumar P; Sundaram S Chem Rec; 2021 Apr; 21(4):663-714. PubMed ID: 33543591 [TBL] [Abstract][Full Text] [Related]
11. Scaling Up Studies on PEMFC Using a Modified Serpentine Flow Field Incorporating Porous Sponge Inserts to Observe Water Molecules. Marappan M; Narayanan R; Manoharan K; Vijayakrishnan MK; Palaniswamy K; Karazhanov S; Sundaram S Molecules; 2021 Jan; 26(2):. PubMed ID: 33430043 [TBL] [Abstract][Full Text] [Related]
12. Snowflake Bionic Flow Channel Design to Optimize the Pressure Drop and Flow Uniform of Proton Exchange Membrane Fuel Cells. Li Y; Bi J; Tang M; Lu G Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630132 [TBL] [Abstract][Full Text] [Related]
13. Numerical modelling and CFD simulation of a polymer electrolyte membrane (PEM) fuel cell flow channel using an open pore cellular foam material. Wilberforce T; Khatib FN; Ijaodola OS; Ogungbemi E; El-Hassan Z; Durrant A; Thompson J; Olabi AG Sci Total Environ; 2019 Aug; 678():728-740. PubMed ID: 31082779 [TBL] [Abstract][Full Text] [Related]
14. Dataset and measurements from a current density sensor during experimental testing of dynamic load cycling for a parallel-serpentine design of a proton exchange membrane fuel cell. Toharias B; Suárez C; Iranzo A; Salva M; Rosa F Data Brief; 2024 Jun; 54():110392. PubMed ID: 38632982 [TBL] [Abstract][Full Text] [Related]
15. Effects of the Design and Optimization of Trapezoidal Channels and Baffles (Number and Position) on the Net Power Density of Proton-Exchange Membrane Fuel Cells. Xu C; Wang H; Li Z; Cheng T ACS Omega; 2022 Feb; 7(5):4214-4223. PubMed ID: 35155914 [TBL] [Abstract][Full Text] [Related]
16. Effect of Gas Diffusion Layer Notch Arrangement and Gradient Depth on the Performance of Proton Exchange Membrane Fuel Cells in the Serpentine Flow Field. Zhang H; Zhang L; Zhang Y; Hou Z; Liu J ACS Omega; 2023 Mar; 8(11):10191-10201. PubMed ID: 36969400 [TBL] [Abstract][Full Text] [Related]
17. Numerical Analysis of the Effect of Liquid Water during Switching Mode for Unitised Regenerative Proton Exchange Membrane Fuel Cell. Low HC; Lim BH Membranes (Basel); 2023 Mar; 13(4):. PubMed ID: 37103817 [TBL] [Abstract][Full Text] [Related]
18. 3D Printing to Enable Self-Breathing Fuel Cells. Sapkota P; Brockbank P; Aguey-Zinsou KF 3D Print Addit Manuf; 2024 Feb; 11(1):68-77. PubMed ID: 38389672 [TBL] [Abstract][Full Text] [Related]
19. Effects of Cathode GDL Gradient Porosity Distribution along the Flow Channel Direction on Gas-Liquid Transport and Performance of PEMFC. Zhu R; Zhan Z; Zhang H; Du Q; Chen X; Xiang X; Wen X; Pan M Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050243 [TBL] [Abstract][Full Text] [Related]
20. Dataset and mesh of the CFD numerical model for the modelling and simulation of a PEM fuel cell. Iranzo A; Toharias B; Suárez C; Rosa F; Pino J Data Brief; 2022 Apr; 41():107987. PubMed ID: 35257018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]