These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 39375609)

  • 21. Assessing muscle invasion in bladder cancer via virtual biopsy: a study on quantitative parameters and classical radiomics features from dual-energy CT imaging.
    Hu M; Wei W; Zhang J; Wang S; Tong X; Fan Y; Cheng Q; Liu Y; Li J; Liu L
    BMC Med Imaging; 2024 Sep; 24(1):245. PubMed ID: 39285354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model.
    Ma X; Xia L; Chen J; Wan W; Zhou W
    Eur Radiol; 2023 Mar; 33(3):1949-1962. PubMed ID: 36169691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer.
    Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P
    Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constructing a Deep Learning Radiomics Model Based on X-ray Images and Clinical Data for Predicting and Distinguishing Acute and Chronic Osteoporotic Vertebral Fractures: A Multicenter Study.
    Zhang J; Xia L; Tang J; Xia J; Liu Y; Zhang W; Liu J; Liang Z; Zhang X; Zhang L; Tang G
    Acad Radiol; 2024 May; 31(5):2011-2026. PubMed ID: 38016821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prototype early diagnostic model for invasive pulmonary aspergillosis based on deep learning and big data training.
    Wang W; Li M; Fan P; Wang H; Cai J; Wang K; Zhang T; Xiao Z; Yan J; Chen C; Lv Q
    Mycoses; 2023 Feb; 66(2):118-127. PubMed ID: 36271699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A retrospective study differentiating nontuberculous mycobacterial pulmonary disease from pulmonary tuberculosis on computed tomography using radiomics and machine learning algorithms.
    Zhou L; Wang Y; Zhu W; Zhao Y; Yu Y; Hu Q; Yu W
    Ann Med; 2024 Dec; 56(1):2401613. PubMed ID: 39283049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiomics Analysis of Computed Tomography for Prediction of Thyroid Capsule Invasion in Papillary Thyroid Carcinoma: A Multi-Classifier and Two-Center Study.
    Wu X; Yu P; Jia C; Mao N; Che K; Li G; Zhang H; Mou Y; Song X
    Front Endocrinol (Lausanne); 2022; 13():849065. PubMed ID: 35692398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CT-based radiomics research for discriminating the risk stratification of pheochromocytoma using different machine learning models: a multi-center study.
    Zhao J; Zhan Y; Zhou Y; Yang Z; Xiong X; Ye Y; Yao B; Xu S; Peng Y; Xiao X; Zeng X; Zuo M; Dai X; Gong L
    Abdom Radiol (NY); 2024 May; 49(5):1569-1583. PubMed ID: 38587628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radiomics and Clinical Characters Based Gaussian Naive Bayes (GNB) Model for Preoperative Differentiation of Pulmonary Pure Invasive Mucinous Adenocarcinoma From Mixed Mucinous Adenocarcinoma.
    Zhang J; Hao L; Xu Q; Gao F
    Technol Cancer Res Treat; 2024; 23():15330338241258415. PubMed ID: 38819419
    [No Abstract]   [Full Text] [Related]  

  • 30. Comparison of deep-learning and radiomics-based machine-learning methods for the identification of chronic obstructive pulmonary disease on low-dose computed tomography images.
    Guan Y; Zhang D; Zhou X; Xia Y; Lu Y; Zheng X; He C; Liu S; Fan L
    Quant Imaging Med Surg; 2024 Mar; 14(3):2485-2498. PubMed ID: 38545077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a CT-Based comprehensive model combining clinical, radiomics with deep learning for differentiating pulmonary metastases from noncalcified pulmonary hamartomas: a retrospective cohort study.
    Liu Y; Ren H; Pei Y; Shen L; Guo J; Zhou J; Li C; Liu Y
    Int J Surg; 2024 Aug; 110(8):4900-4910. PubMed ID: 38759692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-sequence MRI-based radiomics model to preoperatively predict the WHO/ISUP grade of clear Cell Renal Cell Carcinoma: a two-center study.
    Chen R; Su Q; Li Y; Shen P; Zhang J; Tan Y
    BMC Cancer; 2024 Sep; 24(1):1176. PubMed ID: 39333970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasound-based deep learning radiomics model for differentiating benign, borderline, and malignant ovarian tumours: a multi-class classification exploratory study.
    Du Y; Guo W; Xiao Y; Chen H; Yao J; Wu J
    BMC Med Imaging; 2024 Apr; 24(1):89. PubMed ID: 38622546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors.
    Zheng Y; Zhou D; Liu H; Wen M
    Eur Radiol; 2022 Oct; 32(10):6953-6964. PubMed ID: 35484339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A CT-Based Radiomics Nomogram Combined with Clinic-Radiological Characteristics for Preoperative Prediction of the Novel IASLC Grading of Invasive Pulmonary Adenocarcinoma.
    Yang Z; Cai Y; Chen Y; Ai Z; Chen F; Wang H; Han Q; Feng Q; Xiang Z
    Acad Radiol; 2023 Sep; 30(9):1946-1961. PubMed ID: 36567145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrating Clinical Data and Radiomics and Deep Learning Features for End-to-End Delayed Cerebral Ischemia Prediction on Noncontrast CT.
    Ban QQ; Zhang HT; Wang W; Du YF; Zhao Y; Peng AJ; Qu H
    AJNR Am J Neuroradiol; 2024 Sep; 45(9):1260-1268. PubMed ID: 39025637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computed tomography-based multi-organ radiomics nomogram model for predicting the risk of esophagogastric variceal bleeding in cirrhosis.
    Peng YJ; Liu X; Liu Y; Tang X; Zhao QP; Du Y
    World J Gastroenterol; 2024 Sep; 30(36):4044-4056. PubMed ID: 39351251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CT-Based Radiomics Analysis of Different Machine Learning Models for Discriminating the Risk Stratification of Pheochromocytoma and Paraganglioma: A Multicenter Study.
    Zhou Y; Zhan Y; Zhao J; Zhong L; Tan Y; Zeng W; Zeng Q; Gong M; Li A; Gong L; Liu L
    Acad Radiol; 2024 Jul; 31(7):2859-2871. PubMed ID: 38302388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study.
    Song H; Yang S; Yu B; Li N; Huang Y; Sun R; Wang B; Nie P; Hou F; Huang C; Zhang M; Wang H
    Cancer Imaging; 2023 Sep; 23(1):89. PubMed ID: 37723572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computed tomography-based radiomics for identifying pulmonary cryptococcosis mimicking lung cancer.
    Zhang Y; Chu Z; Yu J; Chen X; Liu J; Xu J; Huang C; Peng L
    Med Phys; 2022 Sep; 49(9):5943-5952. PubMed ID: 35678964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.