These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 39375719)
1. Equipping computational pathology systems with artifact processing pipelines: a showcase for computation and performance trade-offs. Kanwal N; Khoraminia F; Kiraz U; Mosquera-Zamudio A; Monteagudo C; Janssen EAM; Zuiverloon TCM; Rong C; Engan K BMC Med Inform Decis Mak; 2024 Oct; 24(1):288. PubMed ID: 39375719 [TBL] [Abstract][Full Text] [Related]
2. Are you sure it's an artifact? Artifact detection and uncertainty quantification in histological images. Kanwal N; López-Pérez M; Kiraz U; Zuiverloon TCM; Molina R; Engan K Comput Med Imaging Graph; 2024 Mar; 112():102321. PubMed ID: 38199127 [TBL] [Abstract][Full Text] [Related]
3. Automated curation of large-scale cancer histopathology image datasets using deep learning. Hilgers L; Ghaffari Laleh N; West NP; Westwood A; Hewitt KJ; Quirke P; Grabsch HI; Carrero ZI; Matthaei E; Loeffler CML; Brinker TJ; Yuan T; Brenner H; Brobeil A; Hoffmeister M; Kather JN Histopathology; 2024 Jun; 84(7):1139-1153. PubMed ID: 38409878 [TBL] [Abstract][Full Text] [Related]
4. Artifact Augmentation for Learning-based Quality Control of Whole Slide Images. Jurgas A; Wodzinski M; Celniak W; Atzori M; Muller H Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082977 [TBL] [Abstract][Full Text] [Related]
5. Deep computational pathology in breast cancer. Duggento A; Conti A; Mauriello A; Guerrisi M; Toschi N Semin Cancer Biol; 2021 Jul; 72():226-237. PubMed ID: 32818626 [TBL] [Abstract][Full Text] [Related]
6. RegWSI: Whole slide image registration using combined deep feature- and intensity-based methods: Winner of the ACROBAT 2023 challenge. Wodzinski M; Marini N; Atzori M; Müller H Comput Methods Programs Biomed; 2024 Jun; 250():108187. PubMed ID: 38657383 [TBL] [Abstract][Full Text] [Related]
7. Quality control stress test for deep learning-based diagnostic model in digital pathology. Schömig-Markiefka B; Pryalukhin A; Hulla W; Bychkov A; Fukuoka J; Madabhushi A; Achter V; Nieroda L; Büttner R; Quaas A; Tolkach Y Mod Pathol; 2021 Dec; 34(12):2098-2108. PubMed ID: 34168282 [TBL] [Abstract][Full Text] [Related]
8. VENet: Variational energy network for gland segmentation of pathological images and early gastric cancer diagnosis of whole slide images. Zhang S; Yuan Z; Zhou X; Wang H; Chen B; Wang Y Comput Methods Programs Biomed; 2024 Jun; 250():108178. PubMed ID: 38652995 [TBL] [Abstract][Full Text] [Related]
9. Masked hypergraph learning for weakly supervised histopathology whole slide image classification. Shi J; Shu T; Wu K; Jiang Z; Zheng L; Wang W; Wu H; Zheng Y Comput Methods Programs Biomed; 2024 Aug; 253():108237. PubMed ID: 38820715 [TBL] [Abstract][Full Text] [Related]
12. Deep convolutional-neural-network-based metal artifact reduction for CT-guided interventional oncology procedures (MARIO). Cao W; Parvinian A; Adamo D; Welch B; Callstrom M; Ren L; Missert A; Favazza CP Med Phys; 2024 Jun; 51(6):4231-4242. PubMed ID: 38353644 [TBL] [Abstract][Full Text] [Related]
13. Artifact Detection and Restoration in Histology Images With Stain-Style and Structural Preservation. Ke J; Liu K; Sun Y; Xue Y; Huang J; Lu Y; Dai J; Chen Y; Han X; Shen Y; Shen D IEEE Trans Med Imaging; 2023 Dec; 42(12):3487-3500. PubMed ID: 37352087 [TBL] [Abstract][Full Text] [Related]
14. Optimized detection and segmentation of nuclei in gastric cancer images using stain normalization and blurred artifact removal. Martos O; Hoque MZ; Keskinarkaus A; Kemi N; Näpänkangas J; Eskuri M; Pohjanen VM; Kauppila JH; Seppänen T Pathol Res Pract; 2023 Aug; 248():154694. PubMed ID: 37494804 [TBL] [Abstract][Full Text] [Related]
15. A deep learning framework for quality assessment and restoration in video endoscopy. Ali S; Zhou F; Bailey A; Braden B; East JE; Lu X; Rittscher J Med Image Anal; 2021 Feb; 68():101900. PubMed ID: 33246229 [TBL] [Abstract][Full Text] [Related]
16. Sliding Window Optimal Transport for Open World Artifact Detection in Histopathology. Fuchs M; Konstantin M; Schrade N; Schweizer L; Tolkach Y; Mukhopadhyay A IEEE J Biomed Health Inform; 2024 Jul; 28(7):4094-4104. PubMed ID: 38557617 [TBL] [Abstract][Full Text] [Related]
17. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning. Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792 [TBL] [Abstract][Full Text] [Related]
18. Deep learning, data ramping, and uncertainty estimation for detecting artifacts in large, imbalanced databases of MRI images. Pizarro R; Assemlal HE; Jegathambal SKB; Jubault T; Antel S; Arnold D; Shmuel A Med Image Anal; 2023 Dec; 90():102942. PubMed ID: 37797482 [TBL] [Abstract][Full Text] [Related]
19. Pathology Image Analysis Using Segmentation Deep Learning Algorithms. Wang S; Yang DM; Rong R; Zhan X; Xiao G Am J Pathol; 2019 Sep; 189(9):1686-1698. PubMed ID: 31199919 [TBL] [Abstract][Full Text] [Related]
20. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks. Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]