BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3937600)

  • 1. Calcium transport mechanisms in dog red blood cells studied from measurements of initial flux rates.
    Altamirano AA; Beaugé L
    Cell Calcium; 1985 Dec; 6(6):503-25. PubMed ID: 3937600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity.
    Escobales N; Canessa M
    J Biol Chem; 1985 Oct; 260(22):11914-23. PubMed ID: 3930487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of intracellular calcium on the sodium pump of human red cells.
    Brown AM; Lew VL
    J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ATP-dependent sodium-sodium exchange in strophanthidin poisoned dialysed squid giant axons.
    Beaugé L; DiPolo R
    J Physiol; 1981 Jun; 315():447-60. PubMed ID: 7310719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanadate inhibition of active Ca2+ transport across human red cell membranes.
    Rossi JP; Garrahan PJ; Rega AF
    Biochim Biophys Acta; 1981 Nov; 648(2):145-50. PubMed ID: 6458333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of several ligands on the potassium-vanadate interaction in the inhibition of the (Na+ + K+)-ATPase and the Na+, K+ pump.
    Beaugé L; Berberian G
    Biochim Biophys Acta; 1983 Jan; 727(2):336-50. PubMed ID: 6301556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton fluxes associated with the Ca pump in human red blood cells.
    Milanick MA
    Am J Physiol; 1990 Mar; 258(3 Pt 1):C552-62. PubMed ID: 2156439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of vanadate on the fluxes of sodium and potassium ions through the sodium pump.
    Beaugé LA; Cavieres JJ; Glynn ; Grantham JJ
    J Physiol; 1980 Apr; 301():7-23. PubMed ID: 6251203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of calcium in the regulation of sugar transport in the avian erythrocyte: effects of the calcium ionophore, A23187.
    Bihler I; Charles P; Sawh PC
    Cell Calcium; 1982 Aug; 3(3):243-62. PubMed ID: 6814760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkaline pH and internal calcium increase Na+ and K+ effluxes in LK sheep red blood cells in Cl--free solutions.
    Ortiz-Carranza O; Miller ME; Adragna NC; Lauf PK
    J Membr Biol; 1997 Apr; 156(3):287-95. PubMed ID: 9096069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ATP and vanadate on calcium efflux from barnacle muscle fibres.
    Nelson MT; Blaustein MP
    Nature; 1981 Jan; 289(5795):314-6. PubMed ID: 6256662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+-K+ pump activities of high- and low-potassium sheep red cells with internal magnesium and calcium altered by A23187.
    Fujise H; Lauf PK
    J Physiol; 1988 Nov; 405():605-14. PubMed ID: 3151371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na-Ca exchange in ferret red blood cells.
    Milanick MA
    Am J Physiol; 1989 Feb; 256(2 Pt 1):C390-8. PubMed ID: 2919665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium- and adenosine-triphosphate-dependent calcium movements in membrane vesicles prepared from dog erythrocytes.
    Ortiz OE; Sjodin RA
    J Physiol; 1984 Sep; 354():287-301. PubMed ID: 6090650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A one-to-one Mg2+:Mn2+ exchange in rat erythrocytes.
    Féray JC; Garay R
    J Biol Chem; 1987 Apr; 262(12):5763-8. PubMed ID: 3571233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of monovalent and divalent cations on Ca2+ fluxes across chromaffin secretory membrane vesicles.
    Krieger-Brauer HI; Gratzl M
    J Neurochem; 1983 Nov; 41(5):1269-76. PubMed ID: 6413655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a magnesium- and ATP-dependent calcium extrusion pump in dog erythrocytes.
    Brown AM
    Biochim Biophys Acta; 1979 Jun; 554(1):195-203. PubMed ID: 378257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium and calcium movements in dog red blood cells.
    Parker JC
    J Gen Physiol; 1978 Jan; 71(1):1-17. PubMed ID: 23406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells.
    Sarkadi B; Szász I; Gerlóczy A; Gárdos G
    Biochim Biophys Acta; 1977 Jan; 464(1):93-107. PubMed ID: 137747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnesium transport in magnesium-loaded ferret red blood cells.
    Flatman PW; Smith LM
    Pflugers Arch; 1996 Oct; 432(6):995-1002. PubMed ID: 8781193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.