These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 3937656)
1. Immunological comparison of glyoxalase I from yeast and mammals and quantitative determination of the enzyme in human tissues by radioimmunoassay. Larsen K; Aronsson AC; Marmstål E; Mannervik B Comp Biochem Physiol B; 1985; 82(4):625-38. PubMed ID: 3937656 [TBL] [Abstract][Full Text] [Related]
2. Glyoxalase I, a zinc metalloenzyme of mammals and yeast. Aronsson AC; Marmstål E; Mannervik B Biochem Biophys Res Commun; 1978 Apr; 81(4):1235-40. PubMed ID: 352355 [No Abstract] [Full Text] [Related]
3. Comparison of glyoxalase I purified from yeast (Saccharomyces cerevisiae) with the enzyme from mammalian sources. Marmstål E; Aronsson AC; Mannervik B Biochem J; 1979 Oct; 183(1):23-30. PubMed ID: 393249 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of glyoxalase I from porcine erythrocytes and yeast by amino-group reagents. Mannervik B; Marmstål E; Ekwall K; Górna-Hall B Eur J Biochem; 1975 May; 53(2):327-33. PubMed ID: 237756 [TBL] [Abstract][Full Text] [Related]
5. Assay of glyoxalase I in blood. Brandt RB; Waters MG; Laux JE Biochem Med; 1983 Dec; 30(3):305-12. PubMed ID: 6360161 [TBL] [Abstract][Full Text] [Related]
6. Partial transition-state inhibitors of glyoxalase I from human erythrocytes, yeast and rat liver. Douglas KT; Gohel DI; Nadvi IN; Quilter AJ; Seddon AP Biochim Biophys Acta; 1985 May; 829(1):109-18. PubMed ID: 3888271 [TBL] [Abstract][Full Text] [Related]
7. Chemical modification of tyrosine residues in glyoxalase I from yeast and human erythrocytes. Carrington SJ; Fetherbe D; Douglas KT Int J Biochem; 1989; 21(8):901-8. PubMed ID: 2684702 [TBL] [Abstract][Full Text] [Related]
8. Nonstereospecific substrate usage by glyoxalase I. Griffis CE; Ong LH; Buettner L; Creighton DJ Biochemistry; 1983 Jun; 22(12):2945-51. PubMed ID: 6347254 [TBL] [Abstract][Full Text] [Related]
9. Optimization of efficiency in the glyoxalase pathway. Creighton DJ; Migliorini M; Pourmotabbed T; Guha MK Biochemistry; 1988 Sep; 27(19):7376-84. PubMed ID: 3207683 [TBL] [Abstract][Full Text] [Related]
10. The subcellular location of isozymes of NADP-isocitrate dehydrogenase in tissues from pig, ox and rat. Plaut GW; Cook M; Aogaichi T Biochim Biophys Acta; 1983 Oct; 760(2):300-8. PubMed ID: 6414522 [TBL] [Abstract][Full Text] [Related]
11. The separation of glyoxalase I and glyoxalase II by paper electrophoresis. Jerzykowski T; Piskorska D; Ostrowska M J Chromatogr; 1976 Jan; 116(1):225-9. PubMed ID: 1107341 [No Abstract] [Full Text] [Related]
12. Diffusion-dependent kinetic properties of glyoxalase I and estimates of the steady-state concentrations of glyoxalase-pathway intermediates in glycolyzing erythrocytes. Shih MJ; Edinger JW; Creighton DJ Eur J Biochem; 1997 Mar; 244(3):852-7. PubMed ID: 9108256 [TBL] [Abstract][Full Text] [Related]
13. Analysis of glyoxalase-I from normal and tumor tissue from human colon. Ranganathan S; Tew KD Biochim Biophys Acta; 1993 Oct; 1182(3):311-6. PubMed ID: 8399366 [TBL] [Abstract][Full Text] [Related]
14. Glyoxalase activity in human red blood cells fractioned by age. McLellan AC; Thornalley PJ Mech Ageing Dev; 1989 Apr; 48(1):63-71. PubMed ID: 2725076 [TBL] [Abstract][Full Text] [Related]
15. Relative distribution of glutathione transferase, glyoxalase I and glyoxalase II in helminths. Brophy PM; Crowley P; Barrett J Int J Parasitol; 1990 Apr; 20(2):259-61. PubMed ID: 2332283 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence and nuclear relaxation enhancement studies of the binding of glutathione derivatives to manganese-reconstituted glyoxalase I from human erythrocytes. A model for the catalytic mechanism of the enzyme involving a hydrated metal ion. Sellin S; Eriksson LE; Mannervik B Biochemistry; 1982 Sep; 21(20):4850-7. PubMed ID: 7138835 [TBL] [Abstract][Full Text] [Related]
17. Yeast glyoxalase I is a monomeric enzyme with two active sites. Frickel EM; Jemth P; Widersten M; Mannervik B J Biol Chem; 2001 Jan; 276(3):1845-9. PubMed ID: 11050082 [TBL] [Abstract][Full Text] [Related]
19. Probing the active site of glyoxalase I from human erythrocytes by use of the strong reversible inhibitor S-p-bromobenzylglutathione and metal substitutions. Aronsson AC; Sellin S; Tibbelin G; Mannervik B Biochem J; 1981 Jul; 197(1):67-75. PubMed ID: 7317034 [TBL] [Abstract][Full Text] [Related]
20. Isolation and kinetic analysis of the multiple forms of glyoxalase-I from human erythrocytes. Schimandle CM; Vander Jagt DL Arch Biochem Biophys; 1979 Jul; 195(2):261-8. PubMed ID: 475391 [No Abstract] [Full Text] [Related] [Next] [New Search]