These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 3937667)

  • 21. Evidence for substrate stabilization in regulation of the degradation of Bacillus subtilis aspartate transcarbamylase in vivo.
    Hu P; Switzer RL
    Arch Biochem Biophys; 1995 Jan; 316(1):260-6. PubMed ID: 7840626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A truncated Bacillus subtilis SecA protein consisting of the N-terminal 234 amino acid residues forms a complex with Escherichia coli SecA51(ts) protein and complements the protein translocation defect of the secA51 mutant.
    Takamatsu H; Nakane A; Oguro A; Sadaie Y; Nakamura K; Yamane K
    J Biochem; 1994 Dec; 116(6):1287-94. PubMed ID: 7706219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Bacillus subtilis addAB genes are fully functional in Escherichia coli.
    Kooistra J; Haijema BJ; Venema G
    Mol Microbiol; 1993 Mar; 7(6):915-23. PubMed ID: 8387145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [PO-independent termination of transcription of catabolite operons in Escherichia coli and Bacillus subtilis].
    Gershanovich VN
    Mol Gen Mikrobiol Virusol; 1999; (3):3-7. PubMed ID: 10495975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DivIC stabilizes FtsL against RasP cleavage.
    Wadenpohl I; Bramkamp M
    J Bacteriol; 2010 Oct; 192(19):5260-3. PubMed ID: 20644139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conversion of the noncooperative Bacillus subtilis aspartate transcarbamoylase into a cooperative enzyme by a single amino acid substitution.
    Stebbins JW; Kantrowitz ER
    Biochemistry; 1992 Mar; 31(8):2328-32. PubMed ID: 1540588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Properties of Bacillus subtilis small, acid-soluble spore proteins with changes in the sequence recognized by their specific protease.
    Carrillo-Martinez Y; Setlow P
    J Bacteriol; 1994 Sep; 176(17):5357-63. PubMed ID: 8071212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel aspects of chemotactic sensory transduction in Bacillus subtilis.
    Carpenter PB; Hanlon DW; Kirsch ML; Ordal GW
    Res Microbiol; 1994; 145(5-6):413-9. PubMed ID: 7855427
    [No Abstract]   [Full Text] [Related]  

  • 29. The overexpression of the SAPB of Bacillus pumilus CBS and mutated sapB-L31I/T33S/N99Y alkaline proteases in Bacillus subtilis DB430: new attractive properties for the mutant enzyme.
    Jaouadi NZ; Jaouadi B; Aghajari N; Bejar S
    Bioresour Technol; 2012 Feb; 105():142-51. PubMed ID: 22178490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of Bacillus subtilis CsaA with SecA and precursor proteins.
    Müller JP; Ozegowski J; Vettermann S; Swaving J; Van Wely KH; Driessen AJ
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):367-73. PubMed ID: 10816431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of parabens on DNA, RNA and protein synthesis in Escherichia coli and Bacillus subtilis.
    Nes IF; Eklund T
    J Appl Bacteriol; 1983 Apr; 54(2):237-42. PubMed ID: 6189812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP.
    Griffith KL; Grossman AD
    Mol Microbiol; 2008 Nov; 70(4):1012-25. PubMed ID: 18811726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Signal peptide hydrophobicity is critical for early stages in protein export by Bacillus subtilis.
    Zanen G; Houben EN; Meima R; Tjalsma H; Jongbloed JD; Westers H; Oudega B; Luirink J; van Dijl JM; Quax WJ
    FEBS J; 2005 Sep; 272(18):4617-30. PubMed ID: 16156784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Study of adhesive properties of bacteria with promise for creation of complex probiotic preparations].
    Tsaruk'ianova IG; Smirnova EV
    Mikrobiol Z; 2005; 67(2):88-95. PubMed ID: 16018221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of the unstable RNA in exponentially growing cultures of Bacillus subtilis and Escherichia coli.
    Salser W; Janin J; Levinthal C
    J Mol Biol; 1968 Jan; 31(2):237-66. PubMed ID: 4965769
    [No Abstract]   [Full Text] [Related]  

  • 36. Rod width under control.
    Carballido-López R
    Nat Microbiol; 2019 Aug; 4(8):1246-1248. PubMed ID: 31337895
    [No Abstract]   [Full Text] [Related]  

  • 37. Protein secretion in bacilli.
    Sarvas M
    Curr Top Microbiol Immunol; 1986; 125():103-25. PubMed ID: 3091323
    [No Abstract]   [Full Text] [Related]  

  • 38. Control of membrane lipid fluidity by molecular thermosensors.
    Mansilla MC; Cybulski LE; Albanesi D; de Mendoza D
    J Bacteriol; 2004 Oct; 186(20):6681-8. PubMed ID: 15466018
    [No Abstract]   [Full Text] [Related]  

  • 39. Topology of the Bacillus subtilis SpoIISA protein and its role in toxin-antitoxin function.
    Makroczyová J; Rešetárová S; Florek P; Barák I
    FEMS Microbiol Lett; 2014 Sep; 358(2):180-7. PubMed ID: 25039482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins.
    Anderson DE; Gueiros-Filho FJ; Erickson HP
    J Bacteriol; 2004 Sep; 186(17):5775-81. PubMed ID: 15317782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.