These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3937667)

  • 41. Preparation, crystallization and preliminary X-ray analysis of YjcG protein from Bacillus subtilis.
    Li D; Chan C; Liang YH; Zheng X; Li L; Su XD
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 May; 61(Pt 5):496-8. PubMed ID: 16511078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction of enzymes of the tricarboxylic acid cycle in Bacillus subtilis and Escherichia coli: a comparative study.
    Jung T; Mack M
    FEMS Microbiol Lett; 2018 Apr; 365(8):. PubMed ID: 29546354
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modular expression and secretion vectors for Bacillus subtilis.
    Nagarajan V; Albertson H; Chen M; Ribbe J
    Gene; 1992 May; 114(1):121-6. PubMed ID: 1587474
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The guanosine 3',5'-bis(diphosphate) (ppGpp) cycle. Comparison of synthesis and degradation of guanosine 3',5'-bis(diphosphate) in various bacterial systems.
    Richter D; Fehr S; Harder R
    Eur J Biochem; 1979 Aug; 99(1):57-64. PubMed ID: 114395
    [No Abstract]   [Full Text] [Related]  

  • 45. Resonance Raman and ligand-binding analysis of the oxygen-sensing signal transducer protein HemAT from Bacillus subtilis.
    Aono S; Nakajima H; Ohta T; Kitagawa T
    Methods Enzymol; 2004; 381():618-28. PubMed ID: 15063702
    [No Abstract]   [Full Text] [Related]  

  • 46. Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and
    Parrell D; Zhang Y; Olenic S; Kroos L
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28674070
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The general stress protein Ctc of Bacillus subtilis is a ribosomal protein.
    Schmalisch M; Langbein I; Stülke J
    J Mol Microbiol Biotechnol; 2002 Sep; 4(5):495-501. PubMed ID: 12432960
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Guiding divisome assembly and controlling its activity.
    Tsang MJ; Bernhardt TG
    Curr Opin Microbiol; 2015 Apr; 24():60-5. PubMed ID: 25636132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Active inclusion body formation using Paenibacillus polymyxa PoxB as a fusion partner in Escherichia coli.
    Park SY; Park SH; Choi SK
    Anal Biochem; 2012 Jul; 426(1):63-5. PubMed ID: 22490467
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inactivation of glutamine: 5-phosphoribosyl 1-pyrophosphate amidotransferase in Bacillus subtilis: oxidation of an essential Fe-S centre precedes selective degradation.
    Switzer RL; Ruppen ME; Bernlohr DA
    Biochem Soc Trans; 1982 Oct; 10(5):322-4. PubMed ID: 6814966
    [No Abstract]   [Full Text] [Related]  

  • 51. Comparison of different Bacillus subtilis expression systems.
    Vavrová L; Muchová K; Barák I
    Res Microbiol; 2010 Nov; 161(9):791-7. PubMed ID: 20863884
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complementation of the protein transport defect of an Escherichia coli secY mutant (secY24) by Bacillus subtilis secY homologue.
    Nakamura K; Takamatsu H; Akiyama Y; Ito K; Yamane K
    FEBS Lett; 1990 Oct; 273(1-2):75-8. PubMed ID: 2121546
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proteome-wide identification of lysine propionylation in thermophilic and mesophilic bacteria: Geobacillus kaustophilus, Thermus thermophilus, Escherichia coli, Bacillus subtilis, and Rhodothermus marinus.
    Okanishi H; Kim K; Masui R; Kuramitsu S
    Extremophiles; 2017 Mar; 21(2):283-296. PubMed ID: 27928680
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis.
    Mogk A; Homuth G; Scholz C; Kim L; Schmid FX; Schumann W
    EMBO J; 1997 Aug; 16(15):4579-90. PubMed ID: 9303302
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant.
    Kempf B; Gade J; Bremer E
    J Bacteriol; 1997 Oct; 179(20):6213-20. PubMed ID: 9335265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system.
    Schneider R; Hantke K
    Mol Microbiol; 1993 Apr; 8(1):111-21. PubMed ID: 8388528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Induction of stringent response by streptomycin in Bacillus subtilis cells.
    Ikehara K; Kamitani E; Koarata C; Ogura A
    J Biochem; 1985 Feb; 97(2):697-700. PubMed ID: 2409074
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transport capabilities encoded within the Bacillus subtilis genome.
    Saier MH; Goldman SR; Maile RR; Moreno MS; Weyler W; Yang N; Paulsen IT
    J Mol Microbiol Biotechnol; 2002 Jan; 4(1):37-67. PubMed ID: 11763970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The Pho regulons of bacteria].
    Vershinina OA; Znamenskaia LV
    Mikrobiologiia; 2002; 71(5):581-95. PubMed ID: 12449623
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-dimensional polyacrylamide gel electrophoresis of proteins synthesized during early germination of Bacillus subtilis 168 in the presence of actinomycin D.
    Hirano Y; Matsuda M; Kameyama T
    J Basic Microbiol; 1991; 31(6):429-36. PubMed ID: 1818103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.