These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39377321)
1. Charge transport in organic semiconductors from the mapping approach to surface hopping. Runeson JE; Drayton TJG; Manolopoulos DE J Chem Phys; 2024 Oct; 161(14):. PubMed ID: 39377321 [TBL] [Abstract][Full Text] [Related]
2. Performance of Mixed Quantum-Classical Approaches on Modeling the Crossover from Hopping to Bandlike Charge Transport in Organic Semiconductors. Xie W; Holub D; Kubař T; Elstner M J Chem Theory Comput; 2020 Apr; 16(4):2071-2084. PubMed ID: 32176844 [TBL] [Abstract][Full Text] [Related]
3. Crossover from hopping to band-like transport in crystalline organic semiconductors: The effect of shallow traps. Dong J; Wu C J Chem Phys; 2019 Jan; 150(4):044903. PubMed ID: 30709264 [TBL] [Abstract][Full Text] [Related]
4. Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport. Lee CK; Moix J; Cao J J Chem Phys; 2015 Apr; 142(16):164103. PubMed ID: 25933748 [TBL] [Abstract][Full Text] [Related]
5. Efficient Surface Hopping Approach for Modeling Charge Transport in Organic Semiconductors. Roosta S; Ghalami F; Elstner M; Xie W J Chem Theory Comput; 2022 Mar; 18(3):1264-1274. PubMed ID: 35179894 [TBL] [Abstract][Full Text] [Related]
6. How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics - beyond the hopping/band paradigm. Carof A; Giannini S; Blumberger J Phys Chem Chem Phys; 2019 Dec; 21(48):26368-26386. PubMed ID: 31793569 [TBL] [Abstract][Full Text] [Related]
7. Detailed balance, internal consistency, and energy conservation in fragment orbital-based surface hopping. Carof A; Giannini S; Blumberger J J Chem Phys; 2017 Dec; 147(21):214113. PubMed ID: 29221382 [TBL] [Abstract][Full Text] [Related]
8. Flexible Surface Hopping Approach to Model the Crossover from Hopping to Band-like Transport in Organic Crystals. Wang L; Beljonne D J Phys Chem Lett; 2013 Jun; 4(11):1888-94. PubMed ID: 26283125 [TBL] [Abstract][Full Text] [Related]
9. A mapping approach to surface hopping. Mannouch JR; Richardson JO J Chem Phys; 2023 Mar; 158(10):104111. PubMed ID: 36922129 [TBL] [Abstract][Full Text] [Related]
10. Simulation of Singlet Exciton Diffusion in Bulk Organic Materials. Kranz JJ; Elstner M J Chem Theory Comput; 2016 Sep; 12(9):4209-21. PubMed ID: 27434173 [TBL] [Abstract][Full Text] [Related]
11. Decoherence and energy relaxation in the quantum-classical dynamics for charge transport in organic semiconducting crystals: An instantaneous decoherence correction approach. Si W; Wu CQ J Chem Phys; 2015 Jul; 143(2):024103. PubMed ID: 26178086 [TBL] [Abstract][Full Text] [Related]
12. Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations. Nocera A; Perroni CA; Ramaglia VM; Cataudella V Beilstein J Nanotechnol; 2016; 7():439-64. PubMed ID: 27335736 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of different methods for calculating electronic transition rates. Kananenka AA; Sun X; Schubert A; Dunietz BD; Geva E J Chem Phys; 2018 Mar; 148(10):102304. PubMed ID: 29544297 [TBL] [Abstract][Full Text] [Related]
14. Quasi-diabatic propagation scheme for simulating polariton chemistry. Hu D; Mandal A; Weight BM; Huo P J Chem Phys; 2022 Nov; 157(19):194109. PubMed ID: 36414442 [TBL] [Abstract][Full Text] [Related]
15. Mixed quantum-classical equilibrium in global flux surface hopping. Sifain AE; Wang L; Prezhdo OV J Chem Phys; 2015 Jun; 142(22):224102. PubMed ID: 26071696 [TBL] [Abstract][Full Text] [Related]