These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 39377872)

  • 1. Synthesis of β-ionone from xylose and lignocellulosic hydrolysate in genetically engineered oleaginous yeast Yarrowia lipolytica.
    Shi JT; Wu YY; Sun RZ; Hua Q; Wei LJ
    Biotechnol Lett; 2024 Dec; 46(6):1219-1236. PubMed ID: 39377872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone.
    Czajka JJ; Nathenson JA; Benites VT; Baidoo EEK; Cheng Q; Wang Y; Tang YJ
    Microb Cell Fact; 2018 Sep; 17(1):136. PubMed ID: 30172260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering oleaginous yeast Yarrowia lipolytica for enhanced limonene production from xylose and lignocellulosic hydrolysate.
    Yao F; Liu SC; Wang DN; Liu ZJ; Hua Q; Wei LJ
    FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32840573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Production of Triacetic Acid Lactone from Lignocellulose Hydrolysate by Metabolically Engineered
    Liu H; Huang X; Liu Y; Jing X; Ning Y; Xu P; Deng L; Wang F
    J Agric Food Chem; 2023 Dec; 71(48):18909-18918. PubMed ID: 37999448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica.
    Wu Y; Xu S; Gao X; Li M; Li D; Lu W
    Microb Cell Fact; 2019 May; 18(1):83. PubMed ID: 31103047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain.
    Drzymała-Kapinos K; Mirończuk AM; Dobrowolski A
    Microb Cell Fact; 2022 Oct; 21(1):226. PubMed ID: 36307797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of α-Pinene by Genetically Engineered
    Wei LJ; Zhong YT; Nie MY; Liu SC; Hua Q
    J Agric Food Chem; 2021 Jan; 69(1):275-285. PubMed ID: 33356235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling xylose utilization in Yarrowia lipolytica for lipid production.
    Li H; Alper HS
    Biotechnol J; 2016 Sep; 11(9):1230-40. PubMed ID: 27367454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable succinic acid production from lignocellulosic hydrolysates by engineered strains of Yarrowia lipolytica at low pH.
    Zhong Y; Gu J; Shang C; Deng J; Liu Y; Cui Z; Lu X; Qi Q
    Bioresour Technol; 2024 Sep; 408():131166. PubMed ID: 39067709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization.
    Gao Q; Cao X; Huang YY; Yang JL; Chen J; Wei LJ; Hua Q
    ACS Synth Biol; 2018 May; 7(5):1371-1380. PubMed ID: 29694786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient production of the β-ionone aroma compound from organic waste hydrolysates using an engineered
    Chen S; Lu Y; Wang W; Hu Y; Wang J; Tang S; Lin CSK; Yang X
    Front Microbiol; 2022; 13():960558. PubMed ID: 36212878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced Strategies for the Synthesis of Terpenoids in
    Li ZJ; Wang YZ; Wang LR; Shi TQ; Sun XM; Huang H
    J Agric Food Chem; 2021 Mar; 69(8):2367-2381. PubMed ID: 33595318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production.
    Gao S; Tong Y; Zhu L; Ge M; Zhang Y; Chen D; Jiang Y; Yang S
    Metab Eng; 2017 May; 41():192-201. PubMed ID: 28414174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of a Push-Pull-Block Strategy with a Heterologous Xylose Assimilation Pathway toward Lipid Overproduction from Lignocellulose in
    Sun T; Yu Y; Wang L; Qi Y; Xu T; Wang Z; Lin L; Ledesma-Amaro R; Ji XJ
    ACS Synth Biol; 2023 Mar; 12(3):761-767. PubMed ID: 36789673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activating and Elucidating Metabolism of Complex Sugars in Yarrowia lipolytica.
    Ryu S; Hipp J; Trinh CT
    Appl Environ Microbiol; 2016 Feb; 82(4):1334-1345. PubMed ID: 26682853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of
    Wei LJ; Cao X; Liu JJ; Kwak S; Jin YS; Wang W; Hua Q
    Appl Environ Microbiol; 2021 Aug; 87(17):e0048121. PubMed ID: 34132586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering and evolution of Yarrowia lipolytica for producing lipids from lignocellulosic hydrolysates.
    Yook S; Deewan A; Ziolkowski L; Lane S; Tohidifar P; Cheng MH; Singh V; Stasiewicz MJ; Rao CV; Jin YS
    Bioresour Technol; 2024 Nov; 416():131806. PubMed ID: 39536885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of
    Zhang G; Wang H; Zhang Z; Verstrepen KJ; Wang Q; Dai Z
    Crit Rev Biotechnol; 2022 Jun; 42(4):618-633. PubMed ID: 34325575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.