These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39377874)

  • 1. Fusion of spectral and topographic features for land use mapping using a machine learning framework for a regional scale application.
    Sankalpa JKS; Rathnayaka AMRWSD; Ishani PGN; Liyanaarachchi LATS; Gayan MWH; Wijesuriya W; Karunaratne S
    Environ Monit Assess; 2024 Oct; 196(11):1030. PubMed ID: 39377874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: a machine learning approach.
    Kulithalai Shiyam Sundar P; Deka PC
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86220-86236. PubMed ID: 34767164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of machine learning-based classification algorithms in the monitoring of Land Use and Land Cover practices in a hilly terrain.
    Parashar D; Kumar A; Palni S; Pandey A; Singh A; Singh AP
    Environ Monit Assess; 2023 Dec; 196(1):8. PubMed ID: 38049547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demi-decadal land use land cover change analysis of Mizoram, India, with topographic correction using machine learning algorithm.
    Gupta P; Shukla DP
    Environ Sci Pollut Res Int; 2024 May; 31(21):30569-30591. PubMed ID: 38609681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of land use land cover changes using machine learning and GIS techniques: a case study in El-Fayoum Governorate, Egypt.
    Atef I; Ahmed W; Abdel-Maguid RH
    Environ Monit Assess; 2023 May; 195(6):637. PubMed ID: 37133528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decadal Trend in Agricultural Abandonment and Woodland Expansion in an Agro-Pastoral Transition Band in Northern China.
    Wang C; Gao Q; Wang X; Yu M
    PLoS One; 2015; 10(11):e0142113. PubMed ID: 26562303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal classification of land use and land cover and its changes in Kerala using remote sensing and machine learning approach.
    Vijay A; Varija K
    Environ Monit Assess; 2024 Apr; 196(5):459. PubMed ID: 38634958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal classification and prediction of LULC in Brahmani and Baitarni basin using integrated cellular automata models.
    Indraja G; Aashi A; Vema VK
    Environ Monit Assess; 2024 Jan; 196(2):117. PubMed ID: 38183538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping and monitoring land use land cover dynamics employing Google Earth Engine and machine learning algorithms on Chattogram, Bangladesh.
    Biswas J; Jobaer MA; Haque SF; Islam Shozib MS; Limon ZA
    Heliyon; 2023 Nov; 9(11):e21245. PubMed ID: 37954389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of agricultural prospects in relation to land use change and population pressure on a spatiotemporal framework.
    Biswas G; Sengupta A
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):43267-43286. PubMed ID: 35091927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning for urban land use/ cover mapping: Comparison of artificial neural network, random forest and support vector machine, a case study of Dilla town.
    Kasahun M; Legesse A
    Heliyon; 2024 Oct; 10(20):e39146. PubMed ID: 39497969
    [No Abstract]   [Full Text] [Related]  

  • 12. Using multilayer perceptron and similarity-weighted machine learning algorithms to reconstruct the past: A case study of the agricultural expansion on grasslands in the Uruguayan savannas.
    Kappes BB; Kuplich TM; da Silva TS; Weber EJ
    Integr Environ Assess Manag; 2024 Jul; 20(4):1140-1155. PubMed ID: 37850530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative assessment of Land use/land cover changes in a developing region using machine learning algorithms: A case study in the Kurdistan Region, Iraq.
    Rash A; Mustafa Y; Hamad R
    Heliyon; 2023 Nov; 9(11):e21253. PubMed ID: 37954393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh.
    Rahman MTU; Tabassum F; Rasheduzzaman M; Saba H; Sarkar L; Ferdous J; Uddin SZ; Zahedul Islam AZM
    Environ Monit Assess; 2017 Oct; 189(11):565. PubMed ID: 29039035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-layer perceptron-Markov chain based LULC change analysis and prediction using remote sensing data in Prayagraj district, India.
    Kumar V; Agrawal S
    Environ Monit Assess; 2023 Apr; 195(5):619. PubMed ID: 37103760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring land use and land cover change near a nuclear power plant construction site: Akkuyu case, Turkey.
    Iban MC; Sahin E
    Environ Monit Assess; 2022 Sep; 194(10):724. PubMed ID: 36057743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia.
    Nigatu Wondrade ; Dick ØB; Tveite H
    Environ Monit Assess; 2014 Mar; 186(3):1765-80. PubMed ID: 24310365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and classification of patch-based land use and land cover dataset in diverse Indian landscapes: a comparative study of machine learning and deep learning models.
    Rengma NS; Yadav M
    Environ Monit Assess; 2024 May; 196(6):568. PubMed ID: 38775887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management.
    Debnath J; Sahariah D; Lahon D; Nath N; Chand K; Meraj G; Farooq M; Kumar P; Kanga S; Singh SK
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):106997-107020. PubMed ID: 36418825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LULC change detection using support vector machines and cellular automata-based ANN models in Guna Tana watershed of Abay basin, Ethiopia.
    Fetene DT; Lohani TK; Mohammed AK
    Environ Monit Assess; 2023 Oct; 195(11):1329. PubMed ID: 37848752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.