BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3937842)

  • 1. Specific cleavages of DNA by ascorbate in the presence of copper ion or copper chelates.
    Chiou SH; Chang WC; Jou YS; Chung HM; Lo TB
    J Biochem; 1985 Dec; 98(6):1723-6. PubMed ID: 3937842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbic acid oxidation and DNA scission catalyzed by iron and copper chelates.
    Aronovitch J; Godinger D; Samuni A; Czapski G
    Free Radic Res Commun; 1987; 2(4-6):241-58. PubMed ID: 2462529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA- and protein-scission activities of ascorbate in the presence of copper ion and a copper-peptide complex.
    Chiou SH
    J Biochem; 1983 Oct; 94(4):1259-67. PubMed ID: 6654857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbate autoxidation in the presence of iron and copper chelates.
    Buettner GR
    Free Radic Res Commun; 1986; 1(6):349-53. PubMed ID: 2851502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-scission activities of ascorbate in the presence of metal chelates.
    Chiou SH
    J Biochem; 1984 Oct; 96(4):1307-10. PubMed ID: 6394599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing the DNA nuclease activity of iron, cobalt, nickel, and copper chelates.
    Joyner JC; Reichfield J; Cowan JA
    J Am Chem Soc; 2011 Oct; 133(39):15613-26. PubMed ID: 21815680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the targeted chemical nuclease activity of 1,10-phenanthroline-copper by ligand modification.
    Gallagher J; Chen CH; Pan CQ; Perrin DM; Cho YM; Sigman DS
    Bioconjug Chem; 1996; 7(4):413-20. PubMed ID: 8853454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiproliferative and DNA-scission activities of L-ascorbic acid in the presence of copper chelates.
    Chiou SH; Ohtsu N
    Proc Natl Sci Counc Repub China B; 1985 Oct; 9(4):275-80. PubMed ID: 2937076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of tetrahedral 1,10-phenanthroline-cuprous chelates by transcriptionally active complexes does not depend on the sequence of the promoter.
    Gallagher J; Perrin DM; Chan L; Kwong E; Sigman D
    Chem Biol; 1996 Sep; 3(9):739-46. PubMed ID: 8939690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific DNA damage induced by NADH in the presence of copper(II): role of active oxygen species.
    Oikawa S; Kawanishi S
    Biochemistry; 1996 Apr; 35(14):4584-90. PubMed ID: 8605209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of reducing agent and 1,10-phenanthroline concentration on DNA cleavage by phenanthroline + copper.
    Veal JM; Merchant K; Rill RL
    Nucleic Acids Res; 1991 Jun; 19(12):3383-8. PubMed ID: 2062655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals.
    Fry SC
    Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):507-15. PubMed ID: 9601081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper(II) complexes of 1,10-phenanthroline-derived ligands: studies on DNA binding properties and nuclease activity.
    Hirohama T; Kuranuki Y; Ebina E; Sugizaki T; Arii H; Chikira M; Tamil Selvi P; Palaniandavar M
    J Inorg Biochem; 2005 May; 99(5):1205-19. PubMed ID: 15833344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper modifies liver microsomal UDP-glucuronyltransferase activity through different and opposite mechanisms.
    Letelier ME; Lagos F; Faúndez M; Miranda D; Montoya M; Aracena-Parks P; González-Lira V
    Chem Biol Interact; 2007 Apr; 167(1):1-11. PubMed ID: 17274970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1,10-Phenanthroline stimulates internucleosomal DNA fragmentation in isolated rat-liver nuclei by promoting the redox activity of endogenous copper ions.
    Burkitt MJ; Milne L; Nicotera P; Orrenius S
    Biochem J; 1996 Jan; 313 ( Pt 1)(Pt 1):163-9. PubMed ID: 8546678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence specificity of the deoxyribonuclease activity of 1,10-phenanthroline-copper ion.
    Yoon C; Kuwabara MD; Spassky A; Sigman DS
    Biochemistry; 1990 Feb; 29(8):2116-21. PubMed ID: 2328244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prooxidant activity of flavonoids: copper-dependent strand breaks and the formation of 8-hydroxy-2'-deoxyguanosine in DNA.
    Yoshino M; Haneda M; Naruse M; Murakami K
    Mol Genet Metab; 1999 Dec; 68(4):468-72. PubMed ID: 10607476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper catalyzed oxidation of ascorbate: chemical and ESR studies.
    Varma SD; Shen X; Lohman W
    Lens Eye Toxic Res; 1990; 7(1):49-66. PubMed ID: 2177351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonyl formation on a copper-bound prion protein fragment, PrP23-98, associated with its dopamine oxidase activity.
    Shiraishi N; Nishikimi M
    FEBS Lett; 2002 Jan; 511(1-3):118-22. PubMed ID: 11821060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.