BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3937895)

  • 1. [Leukaemomycin-blocked mutants of Streptomyces griseus and their pigments. III. 11-Desoxydaunomycinone derivatives from the mutant ZIMET 43699/G44].
    Wagner C; Eckardt K; Tresselt D; Ihn W; Schumann G; Fleck WF
    J Basic Microbiol; 1985; 25(10):687-93. PubMed ID: 3937895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Leukemomycin-blocked mutants of Streptomyces griseus and their pigments. II. New 7-hydroxy-bisnahydro-rhodomycinones from the mutant ZIMET 41707/1P].
    Ihn W; Wagner C; Fleck WF; Tresselt D; Eritt I; Sedmera P
    Z Allg Mikrobiol; 1984; 24(8):525-32. PubMed ID: 6438926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Leukaemomycin-blocked mutants of Streptomyces griseus and their pigments].
    Wagner C; Stengel C; Eritt I; Schumann G; Fleck WF
    Z Allg Mikrobiol; 1981; 21(10):751-60. PubMed ID: 6801872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leukaemomycin, an antibiotic with antitumor activity. I. Screening, fermentation, and biological activity.
    Fleck W; Strauss D
    Z Allg Mikrobiol; 1975; 15(7):495-503. PubMed ID: 813402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the production of daunomycinone-derived glycosides and related metabolites in Streptomyces coeruleorubidus and Streptomyces peucetius.
    Blumauerová M; Matĕjů J; Stajner K; Vanĕk Z
    Folia Microbiol (Praha); 1977; 22(4):275-85. PubMed ID: 892669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the autoregulator from Streptomyces griseus JA 5142 on surface cultures of blocked mutant ZIMET 43682.
    Gräfe U; Reinhardt G; Krebs D; Eritt I; Steudel A
    Z Allg Mikrobiol; 1983; 23(6):359-65. PubMed ID: 6415935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial conversion of anthracyclinones to daunomycin by blocked mutants of Streptomyces coeruleorubidus.
    Yoshimoto A; Oki T; Takeuchi T; Umezawa H
    J Antibiot (Tokyo); 1980 Oct; 33(10):1158-66. PubMed ID: 7451367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New anthracycline glycosides from Micromonospora. I. Description of the producing strain.
    Grein A; Merli S; Spalla C
    J Antibiot (Tokyo); 1980 Dec; 33(12):1462-7. PubMed ID: 6941954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformations of anthracyclinones in Streptomyces coeruleorubidus and Streptomyces galilaeus.
    Blumauerová M; Královcová E; Matĕjů J; Jizba J; Vanĕk Z
    Folia Microbiol (Praha); 1979; 24(2):117-27. PubMed ID: 456946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducers of both cytodifferentiation and anthracycline biosynthesis of Streptomyces griseus and their occurrence in actinomycetes and other microorganisms.
    Eritt I; Gräfe U; Fleck WF
    Z Allg Mikrobiol; 1984; 24(1):3-12. PubMed ID: 6426178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leukaemomycin, in antibiotic with antitumor activity. II. Isolation and identification.
    Strauss D; Fleck W
    Z Allg Mikrobiol; 1975; 15(8):615-23. PubMed ID: 816099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of aklanonic acid by blocked mutants of anthracycline-producing strains of Streptomyces galilaeus and Streptomyces peucetius.
    Schumann G; Stengel C; Eckardt K; Ihn W
    J Basic Microbiol; 1986; 26(4):249-55. PubMed ID: 3464736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect of cobalt on the induction by A-factor of the formation of aerial mycelium and anthracyclines by a blocked mutant of Streptomyces griseus.
    Gräfe U; Eritt I; Riesenberg D
    J Basic Microbiol; 1985; 25(4):279-83. PubMed ID: 3926984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A screening method for autoregulators of anthracycline-producing streptomycetes.
    Eritt I; Gräfe U; Fleck WF
    Z Allg Mikrobiol; 1982; 22(2):91-6. PubMed ID: 6806999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra- and interspecific cosynthetic activity of mutants of Streptomyces coeruleorubidus and Streptomyces galilaeus impaired in the biosynthesis of anthracyclines.
    Blumauerová M; Královocová E; Hostálek Z; Vanĕk Z
    Folia Microbiol (Praha); 1979; 24(2):128-35. PubMed ID: 456947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of anthracyclinones: isolation of a new early cyclization product aklaviketone.
    Eckardt K; Schumann G; Tresselt D; Ihn W
    J Antibiot (Tokyo); 1988 Jun; 41(6):788-93. PubMed ID: 3165374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of anthracycline antibiotics by Streptomyces galilaeus. I. Glycosidation of various anthracyclinones by an aclacinomycin-negative mutant and biosynthesis of aclacinomycins from aklavinone.
    Oki T; Yoshimoto A; Matsuzawa Y; Takeuchi T; Umezawa H
    J Antibiot (Tokyo); 1980 Nov; 33(11):1331-40. PubMed ID: 6941952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of secondary metabolite formation by wild type and mutant strains of Streptomyces griseus.
    Jacob HE; Katenkamp U; Wagner C; Fleck WF
    J Basic Microbiol; 1990; 30(6):455-60. PubMed ID: 2126283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Genetic recombination in mutants of the anthracycline-producer Streptomyces griseus].
    Schumann G; Fleck WF
    Z Allg Mikrobiol; 1982; 22(9):639-47. PubMed ID: 6819726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial conversion of anthracycline antibiotics. II. Characterization of the microbial conversion products of auramycinone by Streptomyces coeruleorubidus ATCC 31276.
    Hoshino T; Fujiwara A
    J Antibiot (Tokyo); 1983 Nov; 36(11):1463-7. PubMed ID: 6654755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.