These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39380129)

  • 1. Vibration-Induced Pancake Bouncing of Impacting Droplets on Hydrophobic Surfaces.
    Ren H; Hu X; Wang J; Li N; Chen L
    Langmuir; 2024 Oct; 40(42):22338-22345. PubMed ID: 39380129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces.
    Liu M; Du H; Cheng Y; Zheng H; Jin Y; To S; Wang S; Wang Z
    ACS Appl Mater Interfaces; 2021 May; 13(20):24321-24328. PubMed ID: 33998790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Adaptive Droplet Bouncing on a Dual Gradient Surface.
    Wu C; Qin X; Zheng H; Xu Z; Song Y; Jin Y; Zhang H; Mo J; Li W; Lu J; Wang Z
    Small; 2023 Oct; ():e2304635. PubMed ID: 37786271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pancake Jumping of Sessile Droplets.
    Qian C; Zhou F; Wang T; Li Q; Hu D; Chen X; Wang Z
    Adv Sci (Weinh); 2022 Mar; 9(7):e2103834. PubMed ID: 35032105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and Experimental Studies on the Controllable Pancake Bouncing Behavior of Droplets.
    Wu H; Jiang K; Xu Z; Yu S; Peng X; Zhang Z; Bai H; Liu A; Chai G
    Langmuir; 2019 Dec; 35(52):17000-17008. PubMed ID: 31786923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State.
    Song J; Gao M; Zhao C; Lu Y; Huang L; Liu X; Carmalt CJ; Deng X; Parkin IP
    ACS Nano; 2017 Sep; 11(9):9259-9267. PubMed ID: 28841277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pancake bouncing: simulations and theory and experimental verification.
    Moevius L; Liu Y; Wang Z; Yeomans JM
    Langmuir; 2014 Nov; 30(43):13021-32. PubMed ID: 25286146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing.
    Song J; Huang L; Zhao C; Wu S; Liu H; Lu Y; Deng X; Carmalt CJ; Parkin IP; Sun Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45345-45353. PubMed ID: 31651139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet Impact on Superhydrophobic Mesh Surfaces.
    Chen X; Sun JJ; Zheng SF; Wei BJ; Zhang LZ; Gao SR; Yang YR; Wang XD
    Langmuir; 2024 Aug; 40(32):17049-17059. PubMed ID: 39083646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impingement of binary nanodroplets on rough surfaces: a molecular dynamics study.
    Xue Y; Wang H; Huang S; Bie X; Wang G; Fang M
    Sci Rep; 2024 Aug; 14(1):19030. PubMed ID: 39152235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pancake bouncing on superhydrophobic surfaces.
    Liu Y; Moevius L; Xu X; Qian T; Yeomans JM; Wang Z
    Nat Phys; 2014 Jul; 10(7):515-519. PubMed ID: 28553363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces.
    Du J; Li Y; Wu X; Min Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet impacting on pillared hydrophobic surfaces with different solid fractions.
    Xia L; Yang Z; Chen F; Liu T; Tian Y; Zhang D
    J Colloid Interface Sci; 2024 Mar; 658():61-73. PubMed ID: 38100977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes.
    Kumar A; Tripathy A; Nam Y; Lee C; Sen P
    Soft Matter; 2018 Feb; 14(9):1571-1580. PubMed ID: 29355280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Pressure Pancake Bouncing on Superhydrophobic Surfaces.
    Fu Z; Jin H; Zhang J; Xue T; Guo Q; Yao G; Gao H; Wang Z; Wen D
    Small; 2024 Aug; 20(31):e2310200. PubMed ID: 38497491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity-Switched Droplet Rebound Direction on Anisotropic Superhydrophobic Surfaces.
    Li P; Zhan F; Wang L
    Small; 2024 Feb; 20(6):e2305568. PubMed ID: 37752749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ricocheting Droplets Moving on Super-Repellent Surfaces.
    Pan S; Guo R; Richardson JJ; Berry JD; Besford QA; Björnmalm M; Yun G; Wu R; Lin Z; Zhong QZ; Zhou J; Sun Q; Li J; Lu Y; Dong Z; Banks MK; Xu W; Jiang J; Jiang L; Caruso F
    Adv Sci (Weinh); 2019 Nov; 6(21):1901846. PubMed ID: 31728297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.