These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39380497)

  • 1. Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme.
    Lee HJ; Shin DJ; Nho SB; Lee KW; Kim SK
    Biotechnol J; 2024 Oct; 19(10):e202400351. PubMed ID: 39380497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of PUG1 in inducible porphyrin and heme transport in Saccharomyces cerevisiae.
    Protchenko O; Shakoury-Elizeh M; Keane P; Storey J; Androphy R; Philpott CC
    Eukaryot Cell; 2008 May; 7(5):859-71. PubMed ID: 18326586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional engineering of Saccharomyces cerevisiae for the efficient production of heme by exploring the cytotoxicity and tolerance of heme.
    Guo Q; Li J; Wang MR; Zhao M; Zhang G; Tang S; Xiong LB; Gao B; Wang FQ; Wei DZ
    Metab Eng; 2024 Sep; 85():46-60. PubMed ID: 39019249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse metabolic engineering for improving protein content in Saccharomyces cerevisiae.
    Lee YO; Do SH; Won JY; Chin YW; Chewaka LS; Park BR; Kim SJ; Kim SK
    Biotechnol J; 2023 Sep; 18(9):e2300014. PubMed ID: 37272298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved production of human hemoglobin in yeast by engineering hemoglobin degradation.
    Ishchuk OP; Frost AT; Muñiz-Paredes F; Matsumoto S; Laforge N; Eriksson NL; Martínez JL; Petranovic D
    Metab Eng; 2021 Jul; 66():259-267. PubMed ID: 33984513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-scale modeling drives 70-fold improvement of intracellular heme production in
    Ishchuk OP; Domenzain I; Sánchez BJ; Muñiz-Paredes F; Martínez JL; Nielsen J; Petranovic D
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2108245119. PubMed ID: 35858410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of the L-serine biosynthetic pathway improves glutathione production in Saccharomyces cerevisiae.
    Kobayashi J; Sasaki D; Hara KY; Hasunuma T; Kondo A
    Microb Cell Fact; 2022 Aug; 21(1):153. PubMed ID: 35933377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Metabolic Engineering of
    Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T
    J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae.
    Oud B; Flores CL; Gancedo C; Zhang X; Trueheart J; Daran JM; Pronk JT; van Maris AJ
    Microb Cell Fact; 2012 Sep; 11():131. PubMed ID: 22978798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polygenic Analysis in Absence of Major Effector
    Holt S; Trindade de Carvalho B; Foulquié-Moreno MR; Thevelein JM
    mBio; 2018 Aug; 9(4):. PubMed ID: 30154260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.
    Zhang T; Bu P; Zeng J; Vancura A
    J Biol Chem; 2017 Oct; 292(41):16942-16954. PubMed ID: 28830930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-Aminolevulinic acid fermentation using engineered Saccharomyces cerevisiae.
    Hara KY; Saito M; Kato H; Morikawa K; Kikukawa H; Nomura H; Fujimoto T; Hirono-Hara Y; Watanabe S; Kanamaru K; Kondo A
    Microb Cell Fact; 2019 Nov; 18(1):194. PubMed ID: 31699086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions.
    Kim SK; Jo JH; Park YC; Jin YS; Seo JH
    Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.
    Jo JH; Oh SY; Lee HS; Park YC; Seo JH
    Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose.
    Choi EJ; Kim JW; Kim SJ; Seo SO; Lane S; Park YC; Jin YS; Seo JH
    Biotechnol J; 2016 Nov; 11(11):1424-1432. PubMed ID: 27528190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved biosynthesis of heme in Bacillus subtilis through metabolic engineering assisted fed-batch fermentation.
    Yang S; Wang A; Li J; Shao Y; Sun F; Li S; Cao K; Liu H; Xiong P; Gao Z
    Microb Cell Fact; 2023 May; 22(1):102. PubMed ID: 37198628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
    Zhao Y; Zuo F; Shu Q; Yang X; Deng Y
    Appl Environ Microbiol; 2023 Jun; 89(6):e0053523. PubMed ID: 37212714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.