These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 39381373)

  • 1. Imaging and proteomics toolkits for studying organelle contact sites.
    Gamuyao R; Chang CL
    Front Cell Dev Biol; 2024; 12():1466915. PubMed ID: 39381373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current and Emerging Approaches for Studying Inter-Organelle Membrane Contact Sites.
    Huang X; Jiang C; Yu L; Yang A
    Front Cell Dev Biol; 2020; 8():195. PubMed ID: 32292782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction.
    Li X; Gamuyao R; Wu ML; Cho WJ; Kurtz NB; King SV; Petersen RA; Stabley DR; Lindow C; Climer L; Shirinifard A; Ferrara F; Throm RE; Robinson CG; Carisey A; Tebo AG; Chang CL
    bioRxiv; 2023 Nov; ():. PubMed ID: 38076863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction.
    Li X; Gamuyao R; Wu ML; Cho WJ; King SV; Petersen RA; Stabley DR; Lindow C; Climer LK; Shirinifard A; Ferrara F; Throm RE; Robinson CG; Zhou Y; Carisey AF; Tebo AG; Chang CL
    J Cell Biol; 2024 Sep; 223(9):. PubMed ID: 38949658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system.
    Kakimoto Y; Tashiro S; Kojima R; Morozumi Y; Endo T; Tamura Y
    Sci Rep; 2018 Apr; 8(1):6175. PubMed ID: 29670150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Split-GFP Systems for Visualizing Organelle Contact Sites in Yeast and Human Cells.
    Tashiro S; Kakimoto Y; Shinmyo M; Fujimoto S; Tamura Y
    Front Cell Dev Biol; 2020; 8():571388. PubMed ID: 33330450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Split-TurboID enables contact-dependent proximity labeling in cells.
    Cho KF; Branon TC; Rajeev S; Svinkina T; Udeshi ND; Thoudam T; Kwak C; Rhee HW; Lee IK; Carr SA; Ting AY
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):12143-12154. PubMed ID: 32424107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementation Assay Using Fusion of Split-GFP and TurboID (CsFiND) Enables Simultaneous Visualization and Proximity Labeling of Organelle Contact Sites in Yeast.
    Fujimoto S; Tashiro S; Tamura Y
    Contact (Thousand Oaks); 2023; 6():25152564231153621. PubMed ID: 37366411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria Endoplasmic Reticulum Contact Sites (MERCs): Proximity Ligation Assay as a Tool to Study Organelle Interaction.
    Benhammouda S; Vishwakarma A; Gatti P; Germain M
    Front Cell Dev Biol; 2021; 9():789959. PubMed ID: 34926468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of organelle contact sites by split-GFP-based contact site sensors (SPLICS) in living cells.
    Calì T; Brini M
    Nat Protoc; 2021 Nov; 16(11):5287-5308. PubMed ID: 34686857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proximity labeling strategy enables proteomic analysis of inter-organelle membrane contacts.
    Zhou M; Kong B; Zhang X; Xiao K; Lu J; Li W; Li M; Li Z; Ji W; Hou J; Xu T
    iScience; 2023 Jul; 26(7):107159. PubMed ID: 37485370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximity labeling in mammalian cells with TurboID and split-TurboID.
    Cho KF; Branon TC; Udeshi ND; Myers SA; Carr SA; Ting AY
    Nat Protoc; 2020 Dec; 15(12):3971-3999. PubMed ID: 33139955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different tether proteins of the same membrane contact site affect the localization and mobility of each other.
    Amado L; Cogan AP; González Montoro A
    J Cell Sci; 2023 Jul; 136(13):. PubMed ID: 37303255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in
    Mair A; Xu SL; Branon TC; Ting AY; Bergmann DC
    Elife; 2019 Sep; 8():. PubMed ID: 31535972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic analysis of membrane contact sites in
    Castro IG; Shortill SP; Dziurdzik SK; Cadou A; Ganesan S; Valenti R; David Y; Davey M; Mattes C; Thomas FB; Avraham RE; Meyer H; Fadel A; Fenech EJ; Ernst R; Zaremberg V; Levine TP; Stefan C; Conibear E; Schuldiner M
    Elife; 2022 Nov; 11():. PubMed ID: 36354737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Combinatorial Reporter Set to Visualize the Membrane Contact Sites Between Endoplasmic Reticulum and Other Organelles in Plant Cell.
    Li T; Xiao Z; Li H; Liu C; Shen W; Gao C
    Front Plant Sci; 2020; 11():1280. PubMed ID: 32973839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane contact sites and cytoskeleton-membrane interactions in autophagy.
    Duckney PJ; Wang P; Hussey PJ
    FEBS Lett; 2022 Sep; 596(17):2093-2103. PubMed ID: 35648104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ artificial contact sites (ISACS) between synthetic and endogenous organelle membranes allow for quantification of protein-tethering activities.
    Milanini J; Magdeleine M; Fuggetta N; Ikhlef S; Brau F; Abelanet S; Alpy F; Tomasetto C; Drin G
    J Biol Chem; 2022 May; 298(5):101780. PubMed ID: 35231443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ER-Mitochondria Contact Sites Reporters: Strengths and Weaknesses of the Available Approaches.
    Giamogante F; Barazzuol L; Brini M; Calì T
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33142798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-organelle membrane contact sites: implications for lipid metabolism.
    Vance JE
    Biol Direct; 2020 Nov; 15(1):24. PubMed ID: 33176847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.