These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 39381821)

  • 1. Engaging with artificial intelligence in mammography screening: Swedish breast radiologists' views on trust, information and expertise.
    Högberg C; Larsson S; Lång K
    Digit Health; 2024; 10():20552076241287958. PubMed ID: 39381821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticipating artificial intelligence in mammography screening: views of Swedish breast radiologists.
    Högberg C; Larsson S; Lång K
    BMJ Health Care Inform; 2023 May; 30(1):. PubMed ID: 37217249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Norwegian radiologists' expectations of artificial intelligence in mammographic screening - A cross-sectional survey.
    Martiniussen MA; Larsen M; Larsen ASF; Hovda T; Koch HW; Bjørnerud A; Hofvind S
    Eur J Radiol; 2023 Oct; 167():111061. PubMed ID: 37657381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Expectation Management and Model Transparency on Radiologists' Trust and Utilization of AI Recommendations for Lung Nodule Assessment on Computed Tomography: Simulated Use Study.
    Ewals LJS; Heesterbeek LJJ; Yu B; van der Wulp K; Mavroeidis D; Funk M; Snijders CCP; Jacobs I; Nederend J; Pluyter JR;
    JMIR AI; 2024 Mar; 3():e52211. PubMed ID: 38875574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reader bias in breast cancer screening related to cancer prevalence and artificial intelligence decision support-a reader study.
    Al-Bazzaz H; Janicijevic M; Strand F
    Eur Radiol; 2024 Aug; 34(8):5415-5424. PubMed ID: 38165430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study.
    Lång K; Josefsson V; Larsson AM; Larsson S; Högberg C; Sartor H; Hofvind S; Andersson I; Rosso A
    Lancet Oncol; 2023 Aug; 24(8):936-944. PubMed ID: 37541274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiologist Preferences for Artificial Intelligence-Based Decision Support During Screening Mammography Interpretation.
    Hendrix N; Lowry KP; Elmore JG; Lotter W; Sorensen G; Hsu W; Liao GJ; Parsian S; Kolb S; Naeim A; Lee CI
    J Am Coll Radiol; 2022 Oct; 19(10):1098-1110. PubMed ID: 35970474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population Preferences for Performance and Explainability of Artificial Intelligence in Health Care: Choice-Based Conjoint Survey.
    Ploug T; Sundby A; Moeslund TB; Holm S
    J Med Internet Res; 2021 Dec; 23(12):e26611. PubMed ID: 34898454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms.
    Schaffter T; Buist DSM; Lee CI; Nikulin Y; Ribli D; Guan Y; Lotter W; Jie Z; Du H; Wang S; Feng J; Feng M; Kim HE; Albiol F; Albiol A; Morrell S; Wojna Z; Ahsen ME; Asif U; Jimeno Yepes A; Yohanandan S; Rabinovici-Cohen S; Yi D; Hoff B; Yu T; Chaibub Neto E; Rubin DL; Lindholm P; Margolies LR; McBride RB; Rothstein JH; Sieh W; Ben-Ari R; Harrer S; Trister A; Friend S; Norman T; Sahiner B; Strand F; Guinney J; Stolovitzky G; ; Mackey L; Cahoon J; Shen L; Sohn JH; Trivedi H; Shen Y; Buturovic L; Pereira JC; Cardoso JS; Castro E; Kalleberg KT; Pelka O; Nedjar I; Geras KJ; Nensa F; Goan E; Koitka S; Caballero L; Cox DD; Krishnaswamy P; Pandey G; Friedrich CM; Perrin D; Fookes C; Shi B; Cardoso Negrie G; Kawczynski M; Cho K; Khoo CS; Lo JY; Sorensen AG; Jung H
    JAMA Netw Open; 2020 Mar; 3(3):e200265. PubMed ID: 32119094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 'Humans think outside the pixels' - Radiologists' perceptions of using artificial intelligence for breast cancer detection in mammography screening in a clinical setting.
    Johansson JV; Engström E
    Health Informatics J; 2024; 30(3):14604582241275020. PubMed ID: 39155239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of real-life use of artificial intelligence as support for human reading in a population-based breast cancer screening program with mammography and tomosynthesis.
    Elías-Cabot E; Romero-Martín S; Raya-Povedano JL; Brehl AK; Álvarez-Benito M
    Eur Radiol; 2024 Jun; 34(6):3958-3966. PubMed ID: 37975920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing radiologists' and radiographers' perceptions on artificial intelligence integration: opportunities and challenges.
    Al Mohammad B; Aldaradkeh A; Gharaibeh M; Reed W
    Br J Radiol; 2024 Mar; 97(1156):763-769. PubMed ID: 38273675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patients' Perceptions and Attitudes to the Use of Artificial Intelligence in Breast Cancer Diagnosis: A Narrative Review.
    Pesapane F; Giambersio E; Capetti B; Monzani D; Grasso R; Nicosia L; Rotili A; Sorce A; Meneghetti L; Carriero S; Santicchia S; Carrafiello G; Pravettoni G; Cassano E
    Life (Basel); 2024 Mar; 14(4):. PubMed ID: 38672725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Intelligence for Breast Cancer Screening in Mammography (AI-STREAM): A Prospective Multicenter Study Design in Korea Using AI-Based CADe/x.
    Chang YW; An JK; Choi N; Ko KH; Kim KH; Han K; Ryu JK
    J Breast Cancer; 2022 Feb; 25(1):57-68. PubMed ID: 35133093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of artificial intelligence-based computer-aided diagnosis on the screening outcomes of digital mammography: a matched cohort study.
    Kim H; Choi JS; Kim K; Ko ES; Ko EY; Han BK
    Eur Radiol; 2023 Oct; 33(10):7186-7198. PubMed ID: 37188881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiologists' perceptions on AI integration: An in-depth survey study.
    Cè M; Ibba S; Cellina M; Tancredi C; Fantesini A; Fazzini D; Fortunati A; Perazzo C; Presta R; Montanari R; Forzenigo L; Carrafiello G; Papa S; Alì M
    Eur J Radiol; 2024 Aug; 177():111590. PubMed ID: 38959557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Women's perceptions and attitudes towards the use of AI in mammography in Sweden: a qualitative interview study.
    Viberg Johansson J; Dembrower K; Strand F; Grauman Å
    BMJ Open; 2024 Feb; 14(2):e084014. PubMed ID: 38355190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study.
    Dembrower K; Crippa A; Colón E; Eklund M; Strand F;
    Lancet Digit Health; 2023 Oct; 5(10):e703-e711. PubMed ID: 37690911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study.
    Rodriguez-Ruiz A; Lång K; Gubern-Merida A; Teuwen J; Broeders M; Gennaro G; Clauser P; Helbich TH; Chevalier M; Mertelmeier T; Wallis MG; Andersson I; Zackrisson S; Sechopoulos I; Mann RM
    Eur Radiol; 2019 Sep; 29(9):4825-4832. PubMed ID: 30993432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study.
    van Winkel SL; Rodríguez-Ruiz A; Appelman L; Gubern-Mérida A; Karssemeijer N; Teuwen J; Wanders AJT; Sechopoulos I; Mann RM
    Eur Radiol; 2021 Nov; 31(11):8682-8691. PubMed ID: 33948701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.