These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39382202)
21. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Sánchez-Salcedo S; García A; González-Jiménez A; Vallet-Regí M Acta Biomater; 2023 Jan; 155():654-666. PubMed ID: 36332875 [TBL] [Abstract][Full Text] [Related]
22. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Tang W; Lin D; Yu Y; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Mar; 32():309-323. PubMed ID: 26689464 [TBL] [Abstract][Full Text] [Related]
23. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. Fu Q; Rahaman MN; Fu H; Liu X J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804 [TBL] [Abstract][Full Text] [Related]
24. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Wu C; Fan W; Zhu Y; Gelinsky M; Chang J; Cuniberti G; Albrecht V; Friis T; Xiao Y Acta Biomater; 2011 Oct; 7(10):3563-72. PubMed ID: 21745610 [TBL] [Abstract][Full Text] [Related]
25. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862 [TBL] [Abstract][Full Text] [Related]
26. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Wu C; Zhou Y; Lin C; Chang J; Xiao Y Acta Biomater; 2012 Oct; 8(10):3805-15. PubMed ID: 22750735 [TBL] [Abstract][Full Text] [Related]
27. Optimising bioactive glass scaffolds for bone tissue engineering. Jones JR; Ehrenfried LM; Hench LL Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812 [TBL] [Abstract][Full Text] [Related]
28. Robocasting of SiO Barberi J; Baino F; Fiume E; Orlygsson G; Nommeots-Nomm A; Massera J; Verné E Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443540 [No Abstract] [Full Text] [Related]
29. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells. Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654 [TBL] [Abstract][Full Text] [Related]
30. Mesoporous bioactive glasses as drug delivery and bone tissue regeneration platforms. Wu C; Chang J; Xiao Y Ther Deliv; 2011 Sep; 2(9):1189-98. PubMed ID: 22833912 [TBL] [Abstract][Full Text] [Related]
31. Additive manufacturing of bioactive and biodegradable poly (lactic acid)-tricalcium phosphate scaffolds modified with zinc oxide for guided bone tissue repair. Harb SV; Kolanthai E; Pinto LA; Beatrice CAG; Bezerra EOT; Backes EH; Costa LC; Seal S; Pessan LA Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 38986475 [TBL] [Abstract][Full Text] [Related]
32. 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. Fu S; Du X; Zhu M; Tian Z; Wei D; Zhu Y Biomed Mater; 2019 Oct; 14(6):065011. PubMed ID: 31484173 [TBL] [Abstract][Full Text] [Related]
33. Macroporous microbeads containing apatite-modified mesoporous bioactive glass nanofibres for bone tissue engineering applications. Hsu FY; Hsu HW; Chang YH; Yu JL; Rau LR; Tsai SW Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():346-354. PubMed ID: 29752107 [TBL] [Abstract][Full Text] [Related]
34. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering. Pant S; Thomas S; Loganathan S; Valapa RB Int J Biol Macromol; 2022 Sep; 217():979-997. PubMed ID: 35908677 [TBL] [Abstract][Full Text] [Related]
35. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration. Renghini C; Komlev V; Fiori F; Verné E; Baino F; Vitale-Brovarone C Acta Biomater; 2009 May; 5(4):1328-37. PubMed ID: 19038589 [TBL] [Abstract][Full Text] [Related]
36. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700 [TBL] [Abstract][Full Text] [Related]
37. Effect of Porosity and Pore Shape on the Mechanical and Biological Properties of Additively Manufactured Bone Scaffolds. Liu Q; Wei F; Coathup M; Shen W; Wu D Adv Healthc Mater; 2023 Dec; 12(30):e2301111. PubMed ID: 37689976 [TBL] [Abstract][Full Text] [Related]
38. Bread-Derived Bioactive Porous Scaffolds: An Innovative and Sustainable Approach to Bone Tissue Engineering. Fiume E; Serino G; Bignardi C; Verné E; Baino F Molecules; 2019 Aug; 24(16):. PubMed ID: 31416299 [TBL] [Abstract][Full Text] [Related]
39. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Schmidleithner C; Malferrari S; Palgrave R; Bomze D; Schwentenwein M; Kalaskar DM Biomed Mater; 2019 Jun; 14(4):045018. PubMed ID: 31170697 [TBL] [Abstract][Full Text] [Related]
40. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. Sanzana ES; Navarro M; Ginebra MP; Planell JA; Ojeda AC; Montecinos HA J Biomed Mater Res A; 2014 Jun; 102(6):1767-73. PubMed ID: 23813739 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]