These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 39383174)

  • 1. Reply to kleebayoon et al.
    Matsumoto K; Uchida F
    Eur J Cardiothorac Surg; 2024 Oct; ():. PubMed ID: 39383174
    [No Abstract]   [Full Text] [Related]  

  • 2. Application of robotic-assisted
    Ma K; Zhao T; Yang L; Wang P; Jin J; Teng H; Xia D; Zhu L; Li L; Jiang Q; Wang X
    J Adv Res; 2020 May; 23():123-132. PubMed ID: 32099674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Letter to the Editor Reply: Kleebayoon et al.
    Meador CB; Gainor JF
    Clin Lung Cancer; 2023 Jul; 24(5):e162-e163. PubMed ID: 37032266
    [No Abstract]   [Full Text] [Related]  

  • 4. Scaffold-free trachea regeneration by tissue engineering with bio-3D printing.
    Taniguchi D; Matsumoto K; Tsuchiya T; Machino R; Takeoka Y; Elgalad A; Gunge K; Takagi K; Taura Y; Hatachi G; Matsuo N; Yamasaki N; Nakayama K; Nagayasu T
    Interact Cardiovasc Thorac Surg; 2018 May; 26(5):745-752. PubMed ID: 29346562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replacement of Rat Tracheas by Layered, Trachea-Like, Scaffold-Free Structures of Human Cells Using a Bio-3D Printing System.
    Machino R; Matsumoto K; Taniguchi D; Tsuchiya T; Takeoka Y; Taura Y; Moriyama M; Tetsuo T; Oyama S; Takagi K; Miyazaki T; Hatachi G; Doi R; Shimoyama K; Matsuo N; Yamasaki N; Nakayama K; Nagayasu T
    Adv Healthc Mater; 2019 Apr; 8(7):e1800983. PubMed ID: 30632706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic-Assisted 3D Bio-printing for Repairing Bone and Cartilage Defects through a Minimally Invasive Approach.
    Lipskas J; Deep K; Yao W
    Sci Rep; 2019 Mar; 9(1):3746. PubMed ID: 30842477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration.
    Nakamura A; Murata D; Fujimoto R; Tamaki S; Nagata S; Ikeya M; Toguchida J; Nakayama K
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34380122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size.
    Park JH; Ahn M; Park SH; Kim H; Bae M; Park W; Hollister SJ; Kim SW; Cho DW
    Biomaterials; 2021 Dec; 279():121246. PubMed ID: 34775331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the use of induced pluripotent stem cells (iPSCs) for the regeneration of tracheal cartilage.
    Imaizumi M; Nomoto Y; Sato Y; Sugino T; Miyake M; Wada I; Nakamura T; Omori K
    Cell Transplant; 2013; 22(2):341-53. PubMed ID: 22863018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing for Bone-Cartilage Interface Regeneration.
    Xu J; Ji J; Jiao J; Zheng L; Hong Q; Tang H; Zhang S; Qu X; Yue B
    Front Bioeng Biotechnol; 2022; 10():828921. PubMed ID: 35237582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization and bibliometric analysis of 3D printing in cartilage regeneration.
    Yang Z; Li J; Deng H; Li H; Zhao T; Gao T; Xing D; Lin J
    Front Bioeng Biotechnol; 2023; 11():1214715. PubMed ID: 37456724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration.
    Chen P; Zheng L; Wang Y; Tao M; Xie Z; Xia C; Gu C; Chen J; Qiu P; Mei S; Ning L; Shi Y; Fang C; Fan S; Lin X
    Theranostics; 2019; 9(9):2439-2459. PubMed ID: 31131046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteochondral regeneration using constructs of mesenchymal stem cells made by bio three-dimensional printing in mini-pigs.
    Yamasaki A; Kunitomi Y; Murata D; Sunaga T; Kuramoto T; Sogawa T; Misumi K
    J Orthop Res; 2019 Jun; 37(6):1398-1408. PubMed ID: 30561041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing of alginate/thymoquinone/halloysite nanotube bio-scaffolds for cartilage repairs: experimental and numerical study.
    Zineh BR; Roshangar L; Meshgi S; Shabgard M
    Med Biol Eng Comput; 2022 Nov; 60(11):3069-3080. PubMed ID: 36066743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties.
    Cristovão AF; Sousa D; Silvestre F; Ropio I; Gaspar A; Henriques C; Velhinho A; Baptista AC; Faustino M; Ferreira I
    3D Print Med; 2019 Aug; 5(1):12. PubMed ID: 31376049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress of 3D Printing Techniques for Nasal Cartilage Regeneration.
    Cao Y; Sang S; An Y; Xiang C; Li Y; Zhen Y
    Aesthetic Plast Surg; 2022 Apr; 46(2):947-964. PubMed ID: 34312695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research progress of
    Pei Z; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Apr; 36(4):487-494. PubMed ID: 35426290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct 3D printing of decellularized matrix embedded composite polycaprolactone scaffolds for cartilage regeneration.
    Gruber SMS; Murab S; Ghosh P; Whitlock PW; Lin CJ
    Biomater Adv; 2022 Sep; 140():213052. PubMed ID: 35930819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review.
    Sahranavard M; Sarkari S; Safavi S; Ghorbani F
    Biomater Transl; 2022; 3(2):105-115. PubMed ID: 36105562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.