These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39383834)
1. An analytical approach for determining contact angle hysteresis on smooth, micropillared, and micropored homogeneous surfaces. Li Y J Colloid Interface Sci; 2025 Feb; 679(Pt A):554-565. PubMed ID: 39383834 [TBL] [Abstract][Full Text] [Related]
2. Hysteresis with regard to Cassie and Wenzel states on superhydrophobic surfaces. Patankar NA Langmuir; 2010 May; 26(10):7498-503. PubMed ID: 20085371 [TBL] [Abstract][Full Text] [Related]
3. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
4. Energy dissipation during homogeneous wetting of surfaces with randomly and periodically distributed cylindrical pillars. Kumar P; Mulvaney P; Harvie DJE J Colloid Interface Sci; 2024 Apr; 659():105-118. PubMed ID: 38159487 [TBL] [Abstract][Full Text] [Related]
5. Generalized models for advancing and receding contact angles of fakir droplets on pillared and pored surfaces. Jiang Y; Xu W; Sarshar MA; Choi CH J Colloid Interface Sci; 2019 Sep; 552():359-371. PubMed ID: 31132638 [TBL] [Abstract][Full Text] [Related]
6. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Kusumaatmaja H; Yeomans JM Langmuir; 2007 May; 23(11):6019-32. PubMed ID: 17451253 [TBL] [Abstract][Full Text] [Related]
7. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect. Lin HP; Chen LJ J Colloid Interface Sci; 2021 Dec; 603():539-549. PubMed ID: 34216950 [TBL] [Abstract][Full Text] [Related]
10. Contact angle hysteresis on superhydrophobic stripes. Dubov AL; Mourran A; Möller M; Vinogradova OI J Chem Phys; 2014 Aug; 141(7):074710. PubMed ID: 25149809 [TBL] [Abstract][Full Text] [Related]
11. Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces. Al-Azawi A; Latikka M; Jokinen V; Franssila S; Ras RHA Small; 2017 Oct; 13(38):. PubMed ID: 28815888 [TBL] [Abstract][Full Text] [Related]
12. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. Lam CN; Wu R; Li D; Hair ML; Neumann AW Adv Colloid Interface Sci; 2002 Feb; 96(1-3):169-91. PubMed ID: 11911113 [TBL] [Abstract][Full Text] [Related]
13. Receding dynamics of contact lines and size-dependent adhesion on microstructured hydrophobic surfaces. Li D; Xue Y; Lv P; Huang S; Lin H; Duan H Soft Matter; 2016 May; 12(18):4257-65. PubMed ID: 27072295 [TBL] [Abstract][Full Text] [Related]
14. Drop rebound after impact: the role of the receding contact angle. Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086 [TBL] [Abstract][Full Text] [Related]
15. Partial wetting of chemically patterned surfaces: the effect of drop size. Brandon S; Haimovich N; Yeger E; Marmur A J Colloid Interface Sci; 2003 Jul; 263(1):237-43. PubMed ID: 12804908 [TBL] [Abstract][Full Text] [Related]
17. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State. Tzitzilis D; Tsekeridis C; Ntakoumis I; Papadopoulos P Langmuir; 2024 Jul; 40(26):13422-13427. PubMed ID: 38825812 [TBL] [Abstract][Full Text] [Related]
18. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
19. Droplet Sliding: The Numerical Observation of Multiple Contact Angle Hysteresis. Wang Y; Zhao J; Zhang D; Jian M; Liu H; Zhang X Langmuir; 2019 Jul; 35(30):9970-9978. PubMed ID: 31295001 [TBL] [Abstract][Full Text] [Related]