BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 3938409)

  • 21. Physical and transport properties of sputum from children with idiopathic bronchiectasis.
    Redding GJ; Kishioka C; Martinez P; Rubin BK
    Chest; 2008 Dec; 134(6):1129-1134. PubMed ID: 18753467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mucus properties in children with primary ciliary dyskinesia: comparison with cystic fibrosis.
    Bush A; Payne D; Pike S; Jenkins G; Henke MO; Rubin BK
    Chest; 2006 Jan; 129(1):118-23. PubMed ID: 16424421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of osmolality on mucociliary transportability and rheology of cystic fibrosis and bronchiectasis sputum.
    Shibuya Y; Wills PJ; Cole PJ
    Respirology; 2003 Jun; 8(2):181-5. PubMed ID: 12753533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dose-dependent in vitro effect of recombinant human DNase on rheological and transport properties of cystic fibrosis respiratory mucus.
    Zahm JM; Girod de Bentzmann S; Deneuville E; Perrot-Minnot C; Dabadie A; Pennaforte F; Roussey M; Shak S; Puchelle E
    Eur Respir J; 1995 Mar; 8(3):381-6. PubMed ID: 7789481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Rheology of bronchial secretions and mucociliary transport (author's transl)].
    Puchelle E; Girard F; Zahm JM
    Bull Eur Physiopathol Respir; 1976; 12(6):771-9. PubMed ID: 1016804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical properties of sputum. VII. Rheologic properties and mucociliary transport.
    Dulfano MJ; Adler KB
    Am Rev Respir Dis; 1975 Sep; 112(3):341-7. PubMed ID: 1080651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rheological properties controlling mucociliary frequency and respiratory mucus transport.
    Puchelle E; Zahm JM; Quemada D
    Biorheology; 1987; 24(6):557-63. PubMed ID: 3502756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined use of rheology and portable low-field NMR in cystic fibrosis patients.
    Abrami M; Maschio M; Conese M; Confalonieri M; Gerin F; Dapas B; Farra R; Adrover A; Torelli L; Ruaro B; Grassi G; Grassi M
    Respir Med; 2021; 189():106623. PubMed ID: 34624628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathological mucus and impaired mucus clearance in cystic fibrosis patients result from increased concentration, not altered pH.
    Hill DB; Long RF; Kissner WJ; Atieh E; Garbarine IC; Markovetz MR; Fontana NC; Christy M; Habibpour M; Tarran R; Forest MG; Boucher RC; Button B
    Eur Respir J; 2018 Dec; 52(6):. PubMed ID: 30361244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of erythromycin on mucociliary transportability and rheology of cystic fibrosis and bronchiectasis sputum.
    Shibuya Y; Wills PJ; Cole PJ
    Respiration; 2001; 68(6):615-9. PubMed ID: 11786718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Macrorheology of cystic fibrosis, chronic obstructive pulmonary disease & normal sputum.
    Serisier DJ; Carroll MP; Shute JK; Young SA
    Respir Res; 2009 Jul; 10(1):63. PubMed ID: 19580650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo effects of recombinant human DNase I on sputum in patients with cystic fibrosis.
    Shah PL; Scott SF; Knight RA; Marriott C; Ranasinha C; Hodson ME
    Thorax; 1996 Feb; 51(2):119-25. PubMed ID: 8711640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nasal mucociliary transport and ciliary ultrastructure in cystic fibrosis. A comparative study with healthy volunteers.
    Armengot M; Escribano A; Carda C; Sánchez C; Romero C; Basterra J
    Int J Pediatr Otorhinolaryngol; 1997 May; 40(1):27-34. PubMed ID: 9184975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thioredoxin liquefies and decreases the viscoelasticity of cystic fibrosis sputum.
    Rancourt RC; Tai S; King M; Heltshe SL; Penvari C; Accurso FJ; White CW
    Am J Physiol Lung Cell Mol Physiol; 2004 May; 286(5):L931-8. PubMed ID: 14695120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cystic fibrosis sputum: a barrier to the transport of nanospheres.
    Sanders NN; De Smedt SC; Van Rompaey E; Simoens P; De Baets F; Demeester J
    Am J Respir Crit Care Med; 2000 Nov; 162(5):1905-11. PubMed ID: 11069833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of DNA and actin polymers on the polymer structure and rheology of cystic fibrosis sputum and depolymerization by gelsolin or thymosin beta 4.
    Kater A; Henke MO; Rubin BK
    Ann N Y Acad Sci; 2007 Sep; 1112():140-53. PubMed ID: 17496063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mucociliary transport in trachea of patients with cystic fibrosis.
    Yeates DB; Sturgess JM; Kahn SR; Levison H; Aspin N
    Arch Dis Child; 1976 Jan; 51(1):28-33. PubMed ID: 942226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of rhDNase on purulent airway secretions in chronic bronchitis.
    Puchelle E; Zahm JM; de Bentzmann S; Grosskopf C; Shak S; Mougel D; Polu JM
    Eur Respir J; 1996 Apr; 9(4):765-9. PubMed ID: 8726943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of purulence on ciliary and cough transport in bronchiectasis.
    Tambascio J; de Souza HC; Martinez JA; Afonso JL; Jardim JR; Gastaldi AC
    Respir Care; 2013 Dec; 58(12):2101-6. PubMed ID: 23674811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function.
    Nair C; Shoemark A; Chan M; Ollosson S; Dixon M; Hogg C; Alton EW; Davies JC; Williams HD
    Eur Respir J; 2014 Nov; 44(5):1253-61. PubMed ID: 25186256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.