These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 39384534)

  • 1. Designing Alkylammonium Cations for Enhanced Solubility of Anionic Active Materials in Redox Flow Batteries: The Role of Bulk and Chain Length.
    Mayes ML; Visayas BR; Pahari S; Poudel T; Golen J; Cappillino P
    Chemphyschem; 2024 Oct; ():e202400517. PubMed ID: 39384534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational and experimental investigation of the effect of cation structure on the solubility of anionic flow battery active-materials.
    Visayas BRB; Pahari SK; Gokoglan TC; Golen JA; Agar E; Cappillino PJ; Mayes ML
    Chem Sci; 2021 Dec; 12(48):15892-15907. PubMed ID: 35024113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures.
    Tracy JS; Horst ES; Roytman VA; Toste FD
    Chem Sci; 2022 Sep; 13(36):10806-10814. PubMed ID: 36320695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.
    Hendriks KH; Robinson SG; Braten MN; Sevov CS; Helms BA; Sigman MS; Minteer SD; Sanford MS
    ACS Cent Sci; 2018 Feb; 4(2):189-196. PubMed ID: 29532018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
    Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q
    Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.
    Burgess M; Moore JS; Rodríguez-López J
    Acc Chem Res; 2016 Nov; 49(11):2649-2657. PubMed ID: 27673336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Soluble Imidazolium Ferrocene Bis(sulfonate) Salts for Redox Flow Battery Applications.
    Schrage BR; Zhang B; Petrochko SC; Zhao Z; Frkonja-Kuczin A; Boika A; Ziegler CJ
    Inorg Chem; 2021 Jul; 60(14):10764-10771. PubMed ID: 34210136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-capacity polysulfide-polyiodide nonaqueous redox flow batteries with a ceramic membrane.
    Chen M; Chen H
    Nanoscale Adv; 2023 Jan; 5(2):435-442. PubMed ID: 36756257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte.
    Mitchell NH; Elgrishi N
    J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(23):10938-10946. PubMed ID: 37342204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Soluble Dimethoxymethyl Tetrathiafulvalene with Excellent Stability for Non-Aqueous Redox Flow Batteries.
    Chen D; Shen H; Chen D; Chen N; Meng Y
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31491-31501. PubMed ID: 37341213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance.
    Zhou W; Liu W; Qin M; Chen Z; Xu J; Cao J; Li J
    RSC Adv; 2020 Jun; 10(37):21839-21844. PubMed ID: 35516610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triarylamines as Catholytes in Aqueous Organic Redox Flow Batteries.
    Farag NL; Jethwa RB; Beardmore AE; Insinna T; O'Keefe CA; Klusener PAA; Grey CP; Wright DS
    ChemSusChem; 2023 Jul; 16(13):e202300128. PubMed ID: 36970847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Carbonyl Chemistry in Non-aqueous Mg Flow Batteries.
    Qin Y; Holguin K; Fehlau D; Luo C; Gao T
    Chem Asian J; 2022 Nov; 17(21):e202200587. PubMed ID: 35994590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications.
    Yuan S; Huang X; Kong T; Yan L; Wang Y
    Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing high energy density flow batteries by tuning active-material thermodynamics.
    Pahari SK; Gokoglan TC; Visayas BRB; Woehl J; Golen JA; Howland R; Mayes ML; Agar E; Cappillino PJ
    RSC Adv; 2021 Jan; 11(10):5432-5443. PubMed ID: 35423106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing energy storage through solubility prediction: leveraging the potential of deep learning.
    Chaka MD; Mekonnen YS; Wu Q; Geffe CA
    Phys Chem Chem Phys; 2023 Nov; 25(46):31836-31847. PubMed ID: 37966375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.
    Zhang C; Ding Y; Zhang L; Wang X; Zhao Y; Zhang X; Yu G
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7454-7459. PubMed ID: 28494114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated high-throughput robotic platform and active learning approach for accelerated discovery of optimal electrolyte formulations.
    Noh J; Doan HA; Job H; Robertson LA; Zhang L; Assary RS; Mueller K; Murugesan V; Liang Y
    Nat Commun; 2024 Mar; 15(1):2757. PubMed ID: 38553488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.