These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 39384786)
21. MXene-Integrated Solid-Solid Phase Change Composites for Accelerating Solar-Thermal Energy Storage and Electric Conversion. Usman A; Qin M; Xiong F; Aftab W; Shen Z; Bashir A; Han H; Han S; Zou R Small Methods; 2024 Sep; 8(9):e2301458. PubMed ID: 38326035 [TBL] [Abstract][Full Text] [Related]
22. Use of cellulose nanofibril (CNF)/silver nanoparticles (AgNPs) composite in salt hydrate phase change material for efficient thermal energy storage. Shen Z; Oh K; Kwon S; Toivakka M; Lee HL Int J Biol Macromol; 2021 Mar; 174():402-412. PubMed ID: 33529630 [TBL] [Abstract][Full Text] [Related]
23. Form-Stable Composite Phase Change Materials Based on Porous Copper-Graphene Heterostructures for Solar Thermal Energy Conversion and Storage. Chang C; Li B; Fu B; Yang X; Ji Y Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139974 [TBL] [Abstract][Full Text] [Related]
24. Novel MoS Guo Q; Yi H; Jia F; Song S J Colloid Interface Sci; 2024 Aug; 667():269-281. PubMed ID: 38636228 [TBL] [Abstract][Full Text] [Related]
25. Improved Thermophysical and Mechanical Properties in LiNaSO Taeño M; Adnan A; Luengo C; Serrano Á; Dauvergne JL; Crocomo P; Huerta A; Doppiu S; Palomo Del Barrio E Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202533 [TBL] [Abstract][Full Text] [Related]
26. Effect of Ball-Milled Steatite Powder on the Latent Heat Energy Storage Properties and Heat Charging-Discharging Periods of Paraffin Wax as Phase Change Material. Kannaiyan S; Huang SJ; Rathnaraj D; Srinivasan SA Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144078 [TBL] [Abstract][Full Text] [Related]
27. Enhancing thermal energy storage properties of blend phase change materials using beeswax. Belgacem SB; Trigui A; Jedidi I; Loukil MS; Calmunger M; Abdmouleh M Environ Sci Pollut Res Int; 2024 Aug; 31(39):51504-51520. PubMed ID: 39112900 [TBL] [Abstract][Full Text] [Related]
28. Azelaic Acid/Expanded Graphite Composites with High Latent Heat Storage Capacity and Thermal Conductivity at Medium Temperature. Nguyen GT; Hwang HS; Lee J; Park I ACS Omega; 2021 Mar; 6(12):8469-8476. PubMed ID: 33817508 [TBL] [Abstract][Full Text] [Related]
29. Thermophysical Properties' Enhancement of LiNO Zhu C; Xu M; Tian B; Gu M; Gong L Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336352 [TBL] [Abstract][Full Text] [Related]
30. Nanoparticles to Enhance Melting Performance of Phase Change Materials for Thermal Energy Storage. Han Y; Yang Y; Mallick T; Wen C Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683720 [TBL] [Abstract][Full Text] [Related]
31. Phase Engineered Composite Phase Change Materials for Thermal Energy Manipulation. Aftab W; Shi J; Jin Y; Usman A; Qin M; Ashraf Z; Shen Z; Zhong R; Zou R Small; 2024 Aug; 20(34):e2312134. PubMed ID: 38618938 [TBL] [Abstract][Full Text] [Related]
32. Fabrication, Structure, and Thermal Properties of Mg-Cu Alloys as High Temperature PCM for Thermal Energy Storage. Sun Z; Zou L; Cheng X; Zhu J; Li Y; Zhou W Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361439 [TBL] [Abstract][Full Text] [Related]
33. Pioneering heat transfer enhancements in latent thermal energy storage: Passive and active strategies unveiled. Rahman MA; Zairov R; Akylbekov N; Zhapparbergenov R; Hasnain SMM Heliyon; 2024 Oct; 10(19):e37981. PubMed ID: 39381105 [TBL] [Abstract][Full Text] [Related]
34. The Effect of In Situ Synthesis of MgO Nanoparticles on the Thermal Properties of Ternary Nitrate. Tong Z; Li L; Li Y; Wang Q; Cheng X Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640134 [TBL] [Abstract][Full Text] [Related]
35. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Chieruzzi M; Cerritelli GF; Miliozzi A; Kenny JM Nanoscale Res Lett; 2013 Oct; 8(1):448. PubMed ID: 24168168 [TBL] [Abstract][Full Text] [Related]
36. Novel Latent Heat Storage Systems Based on Liquid Metal Matrices with Suspended Phase Change Material Microparticles. Kang S; Kim W; Song C; Hong Y; Kim S; Goh M; Chung SK; Lee J ACS Appl Mater Interfaces; 2023 Aug; 15(30):36781-36791. PubMed ID: 37475159 [TBL] [Abstract][Full Text] [Related]
38. Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage. Shen Z; Kwon S; Lee HL; Toivakka M; Oh K Int J Biol Macromol; 2022 Dec; 222(Pt B):3001-3013. PubMed ID: 36244531 [TBL] [Abstract][Full Text] [Related]
39. Solar Salt with Carbon Nanotubes as a Potential Phase Change Material for High-Temperature Applications: Investigations on Thermal Properties and Chemical Stability. Vigneshwaran P; Shaik S; Suresh S; Abbas M; Saleel CA; Cuce E ACS Omega; 2023 May; 8(20):17563-17572. PubMed ID: 37251134 [TBL] [Abstract][Full Text] [Related]
40. Three-Dimensional Macroporous rGO-Aerogel-Based Composite Phase-Change Materials with High Thermal Storage Capacity and Enhanced Thermal Conductivity. Tao Z; He W; Xu X; Fan J; Zhang Z; Yang Z; Liu Y; Ma H; Qian M; Yang M Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445192 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]