These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3938510)

  • 1. Magnetic field dependence of proton relaxation rates in tissue with added Mn2+: rabbit liver and kidney.
    Koenig SH; Brown RD; Goldstein EJ; Burnett KR; Wolf GL
    Magn Reson Med; 1985 Apr; 2(2):159-68. PubMed ID: 3938510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal proton relaxation rates in rabbit tissues after intravenous injection of free and chelated Mn2+.
    Spiller M; Brown RD; Koenig SH; Wolf GL
    Magn Reson Med; 1988 Nov; 8(3):293-313. PubMed ID: 2849704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic field dependence of solvent proton relaxation induced by Gd3+ and Mn2+ complexes.
    Koenig SH; Baglin C; Brown RD; Brewer CF
    Magn Reson Med; 1984 Dec; 1(4):496-501. PubMed ID: 6443784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxation of solvent protons by paramagnetic ions and its dependence on magnetic field and chemical environment: implications for NMR imaging.
    Koenig SH; Brown RD
    Magn Reson Med; 1984 Dec; 1(4):478-95. PubMed ID: 6571571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic field dependence (NMRD profile) of 1/T1 of rabbit kidney medulla and urine after intravenous injection of Gd(DTPA).
    Koenig SH; Spiller M; Brown RD; Wolf GL
    Invest Radiol; 1986 Sep; 21(9):697-704. PubMed ID: 3771156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic field dependence of solvent proton relaxation rates induced by Gd3+ and Mn2+ complexes of various polyaza macrocyclic ligands: implications for NMR imaging.
    Geraldes CF; Sherry AD; Brown RD; Koenig SH
    Magn Reson Med; 1986 Apr; 3(2):242-50. PubMed ID: 3086656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxivity and binding of Mn2+ ions in solutions of phosphatidylserine vesicles.
    Koenig SH; Brown RD; Kurland R; Ohki S
    Magn Reson Med; 1988 Jun; 7(2):133-42. PubMed ID: 3398761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of proton relaxation rates in tissue.
    Koenig SH; Brown RD
    Magn Reson Med; 1984 Dec; 1(4):437-49. PubMed ID: 6100933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton and deuteron nuclear magnetic relaxation dispersion studies of Ca2+-Mn2+-concanavalin A: evidence for two classes of exchanging water molecules.
    Koenig SH; Brown RD; Brewer CF
    Biochemistry; 1985 Sep; 24(19):4980-4. PubMed ID: 4074669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The oral administration of MnCl2: a potential alternative to IV injection for tissue contrast enhancement in magnetic resonance imaging.
    Burnett KR; Goldstein EJ; Wolf GL; Sen S; Mamourian AC
    Magn Reson Imaging; 1984; 2(4):307-14. PubMed ID: 6530933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton and deuteron nuclear magnetic relaxation dispersion studies of Ca2+-Mn2+-lentil lectin and Ca2+-Mn2+-pea lectin: evidence for a site of solvent exchange in common with concanavalin A.
    Bhattacharyya L; Brewer CF; Brown RD; Koenig SH
    Biochemistry; 1985 Sep; 24(19):4985-90. PubMed ID: 4074670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field dependence of solvent proton relaxation in aqueous solutions of Fe3+ complexes.
    Koenig SH; Baglin CM; Brown RD
    Magn Reson Med; 1985 Jun; 2(3):283-8. PubMed ID: 3938511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency dependence of MR relaxation times. I. Paramagnetic ions.
    Vymazal J; Bulte JW; Frank JA; Di Chiro G; Brooks RA
    J Magn Reson Imaging; 1993; 3(4):637-40. PubMed ID: 8347957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic evaluation of the hepatic uptake and clearance of manganese-based MRI contrast agents: a 31P NMR study on the isolated and perfused rat liver.
    Colet JM; Vander Elst L; Muller RN
    J Magn Reson Imaging; 1998; 8(3):663-9. PubMed ID: 9626883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of tissue NMR relaxation enhancement by manganese. Dose and time dependences.
    Kang YS; Gore JC
    Invest Radiol; 1984; 19(5):399-407. PubMed ID: 6511248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An NMR study of the interaction between melanin free acid and Mn2+ ions as a model to mimic the enhanced proton relaxation rates in melanotic melanoma.
    Aime S; Fasano M; Terreno E; Sarzanini C; Mentasti E
    Magn Reson Imaging; 1991; 9(6):963-8. PubMed ID: 1766324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMRD assessment of Gd-DTPA-bis(methoxyethylamide), (Gd-DTPA-BMEA), a nonionic MRI agent.
    Adzamli K; Periasamy MP; Spiller M; Koenig SH
    Invest Radiol; 1999 Jun; 34(6):410-4. PubMed ID: 10353033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal ion substitution at the catalytic site of horse-liver alcohol dehydrogenase: results from solvent magnetic relaxation studies. 2. Binding of manganese(II) and competition with zinc(II) and cadmium(II) ions.
    Andersson I; Maret W; Zeppezauer M; Brown RD; Koenig SH
    Biochemistry; 1981 Jun; 20(12):3433-8. PubMed ID: 7020752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anomalous relaxivity of Mn3+ (TPPS4).
    Koenig SH; Brown RD; Spiller M
    Magn Reson Med; 1987 Mar; 4(3):252-60. PubMed ID: 3574059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1/T1 NMRD profiles of solutions of Mn2+ and Gd3+ protein-chelate conjugates.
    Lauffer RB; Brady TJ; Brown RD; Baglin C; Koenig SH
    Magn Reson Med; 1986 Aug; 3(4):541-8. PubMed ID: 3747815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.