These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3938511)

  • 1. Magnetic field dependence of solvent proton relaxation in aqueous solutions of Fe3+ complexes.
    Koenig SH; Baglin CM; Brown RD
    Magn Reson Med; 1985 Jun; 2(3):283-8. PubMed ID: 3938511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation of solvent protons by paramagnetic ions and its dependence on magnetic field and chemical environment: implications for NMR imaging.
    Koenig SH; Brown RD
    Magn Reson Med; 1984 Dec; 1(4):478-95. PubMed ID: 6571571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic field dependence of solvent proton relaxation induced by Gd3+ and Mn2+ complexes.
    Koenig SH; Baglin C; Brown RD; Brewer CF
    Magn Reson Med; 1984 Dec; 1(4):496-501. PubMed ID: 6443784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic field dependence of solvent proton relaxation rates induced by Gd3+ and Mn2+ complexes of various polyaza macrocyclic ligands: implications for NMR imaging.
    Geraldes CF; Sherry AD; Brown RD; Koenig SH
    Magn Reson Med; 1986 Apr; 3(2):242-50. PubMed ID: 3086656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding site of Fe3+ at purine of ATP as studied by NMR.
    Du F; Ma XA; Li DF; Liao ZR
    J Inorg Biochem; 2001 Jan; 83(2-3):101-5. PubMed ID: 11237248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic field dependence of proton relaxation rates in tissue with added Mn2+: rabbit liver and kidney.
    Koenig SH; Brown RD; Goldstein EJ; Burnett KR; Wolf GL
    Magn Reson Med; 1985 Apr; 2(2):159-68. PubMed ID: 3938510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the frequency of heme cavity fluctuations in metmyoglobin and methaemoglobin based on the study of exchange rate of solvent water with paramagnetic Fe3+ ion of heme. 1H-NMR studies.
    Käiväräinen AI; Goryunov AS; Sukhanova G
    Folia Biol (Praha); 1984; 30(6):396-403. PubMed ID: 6519310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The anomalous relaxivity of Mn3+ (TPPS4).
    Koenig SH; Brown RD; Spiller M
    Magn Reson Med; 1987 Mar; 4(3):252-60. PubMed ID: 3574059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton magnetic relaxation dispersion in human fluoromethaemoglobin solutions.
    Lahajnar G; Benko B; Rutar V; Zupancic I
    Int J Pept Protein Res; 1976; 8(3):317-22. PubMed ID: 1279086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic resonance contrast enhancement study of the gastrointestinal tract of rats and a human volunteer using nontoxic oral iron solutions.
    Wesbey GE; Brasch RC; Engelstad BL; Moss AA; Crooks LE; Brito AC
    Radiology; 1983 Oct; 149(1):175-80. PubMed ID: 6611926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxometry of ferritin solutions and the influence of the Fe3+ core ions.
    Koenig SH; Brown RD; Gibson JF; Ward RJ; Peters TJ
    Magn Reson Med; 1986 Oct; 3(5):755-67. PubMed ID: 3784891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of solvent with the heme region of methemoglobin and fluoro-methemoglobin.
    Koenig SH; Brown RD; Lindstrom TR
    Biophys J; 1981 Jun; 34(3):397-408. PubMed ID: 6264989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic relaxation dispersion of ferritin and ferritin-like magnetic particle solutions: a pH-effect study.
    Gossuin Y; Roch A; Lo Bue F; Muller RN; Gillis P
    Magn Reson Med; 2001 Sep; 46(3):476-81. PubMed ID: 11550238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite.
    Gillis P; Koenig SH
    Magn Reson Med; 1987 Oct; 5(4):323-45. PubMed ID: 2824967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the operating magnetic field on potential NMR contrast agents.
    Brown MA
    Magn Reson Imaging; 1985; 3(1):3-10. PubMed ID: 3923291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of proton relaxation rates in tissue.
    Koenig SH; Brown RD
    Magn Reson Med; 1984 Dec; 1(4):437-49. PubMed ID: 6100933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H and 17O NMR relaxometric study in aqueous solution of Gd(III) complexes of EGTA-like derivatives bearing methylenephosphonic groups.
    Tei L; Botta M; Lovazzano C; Barge A; Milone L; Aime S
    Magn Reson Chem; 2008; 46 Suppl 1():S86-93. PubMed ID: 18855344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal proton relaxation rates in rabbit tissues after intravenous injection of free and chelated Mn2+.
    Spiller M; Brown RD; Koenig SH; Wolf GL
    Magn Reson Med; 1988 Nov; 8(3):293-313. PubMed ID: 2849704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferritin-induced relaxation in tissues: an in vitro study.
    Gossuin Y; Burtea C; Monseux A; Toubeau G; Roch A; Muller RN; Gillis P
    J Magn Reson Imaging; 2004 Oct; 20(4):690-6. PubMed ID: 15390148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitroxides on the magnetic field and temperature dependence of 1/T1 of solvent water protons.
    Bennett HF; Brown RD; Koenig SH; Swartz HM
    Magn Reson Med; 1987 Feb; 4(2):93-111. PubMed ID: 3031423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.