These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 393865)

  • 1. [Stoichiometry of cholinergic synaptic vesicles].
    Ohsawa K
    Nihon Rinsho; 1979; 37(7):2840-52. PubMed ID: 393865
    [No Abstract]   [Full Text] [Related]  

  • 2. Adenosine triphosphate in cholinergic vesicles isolated from the electric organ of Electrophorus electricus.
    Zimmermann H; Denston CR
    Brain Res; 1976 Jul; 111(2):365-76. PubMed ID: 949609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lipid and protein content of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata purified to constant composition: implications for vesicle structure.
    Ohsawa K; Dowe GH; Morris SJ; Whittaker VP
    Brain Res; 1979 Feb; 161(3):447-57. PubMed ID: 421130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on homosynaptic (posttetanic) potentiation: a cholinergic modulator of presynaptic origin.
    Torda C
    Physiol Chem Phys; 1978; 10(5):473-81. PubMed ID: 751083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ.
    Zimmermann H; Denston CR
    Neuroscience; 1977; 2(5):715-30. PubMed ID: 593552
    [No Abstract]   [Full Text] [Related]  

  • 6. Vesicular heterogeneity and turnover of acetylcholine and ATP in cholinergic synaptic vesicles.
    Zimmermann H
    Prog Brain Res; 1979; 49():141-51. PubMed ID: 515429
    [No Abstract]   [Full Text] [Related]  

  • 7. Vesicle hypothesis of the release of quanta of acetylcholine.
    Ceccarelli B; Hurlbut WP
    Physiol Rev; 1980 Apr; 60(2):396-441. PubMed ID: 6992165
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of membranes obtained from electric organ of the electric eel by sucrose gradient fractionation and by microdissection.
    Rosenberg P; Silman I; Ben-David E; De Vries A; Condrea E
    J Neurochem; 1977 Sep; 29(3):561-78. PubMed ID: 142822
    [No Abstract]   [Full Text] [Related]  

  • 9. Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm.
    Volknandt W; Zimmermann H
    J Neurochem; 1986 Nov; 47(5):1449-62. PubMed ID: 3760871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of synaptic vesicles in the cholinergic synapses of the Torpedo electric organ during induced transmitter release.
    Zimmerman H; Denston CR
    Neuroscience; 1977; 2(5):695-714. PubMed ID: 22832
    [No Abstract]   [Full Text] [Related]  

  • 11. Turnover of adenine nucleotides in cholinergic synaptic vesicles of the Torpedo electric organ.
    Zimmermann H
    Neuroscience; 1978; 3(9):827-36. PubMed ID: 714254
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular organization of the cholinergic vesicle.
    Whittaker VP
    Adv Cytopharmacol; 1974; 2():311-7. PubMed ID: 4440560
    [No Abstract]   [Full Text] [Related]  

  • 13. Adenosine triphosphate. A constituent of cholinergic synaptic vesicles.
    Dowdall MJ; Boyne AF; Whittaker VP
    Biochem J; 1974 Apr; 140(1):1-12. PubMed ID: 4451548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research on the physiological and structural significance of miniature potentials of abnormal amplitude observed at the level of neuromuscular junctions in frogs in various experimental conditions].
    Pécot-Dechavassine M; Couteaux R
    J Physiol (Paris); 1971; 63(6):138A. PubMed ID: 5152185
    [No Abstract]   [Full Text] [Related]  

  • 15. The structure and stoichiometry of electric ray synaptic vesicles.
    Morris SJ
    Neuroscience; 1980; 5(9):1509-16. PubMed ID: 6106910
    [No Abstract]   [Full Text] [Related]  

  • 16. Vesamicol blocks the recovery, by recycling cholinergic electromotor synaptic vesicles, of the biophysical characteristics of the reserve population.
    Rícný J; Whittaker VP
    Biochim Biophys Acta; 1993 Jun; 1148(2):234-8. PubMed ID: 8504117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in the osmotic fragility of recycling and reserve synaptic vesicles from the cholinergic electromotor nerve terminals of Torpedo and their possible significance for vesicle recycling.
    Giompres PE; Whittaker VP
    Biochim Biophys Acta; 1984 Mar; 770(2):166-70. PubMed ID: 6696906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P-NMR analysis of synaptic vesicles. Status of ATP and internal pH.
    Füldner HH; Stadler H
    Eur J Biochem; 1982 Jan; 121(3):519-24. PubMed ID: 7056254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vesicular storage and release of a false cholinergic transmitted (acetylpyrrolcholine) in the Torpedo electric organ.
    Zimmermann H; Dowdall MJ
    Neuroscience; 1977; 2(5):731-9. PubMed ID: 22833
    [No Abstract]   [Full Text] [Related]  

  • 20. Further evidence that glycosaminoglycan specific to cholinergic synaptic vesicles recycles during electrical stimulation of the electric organ of Torpedo marmorata.
    Jones RT; Walker JH; Stadler H; Whittaker VP
    Cell Tissue Res; 1982; 224(3):685-8. PubMed ID: 7116420
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.