These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 39387078)

  • 1. The AUREX cell: a versatile
    Frank S; Ceccato M; Jeppesen HS; Marks MJ; Nielsen MLN; Lu R; Gammelgaard JJ; Quinson J; Sharma R; Jensen JS; Hjelme S; Friberg Klysner C; Billinge SJL; Just J; Gjørup FH; Catalano J; Lock N
    J Appl Crystallogr; 2024 Oct; 57(Pt 5):1489-1502. PubMed ID: 39387078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-flow reactor setup for operando x-ray absorption spectroscopy of high pressure heterogeneous liquid-solid catalytic processes.
    Deschner BJ; Doronkin DE; Sheppard TL; Rabsch G; Grunwaldt JD; Dittmeyer R
    Rev Sci Instrum; 2021 Dec; 92(12):124101. PubMed ID: 34972445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Application of a Gas Diffusion Electrode (GDE) Cell for Operando and In Situ Studies.
    Wiberg GKH; Pittkowski RK; Punke S; Aalling-Frederiksen O; Jensen KMØ; Arenz M
    Chimia (Aarau); 2024 May; 78(5):344-348. PubMed ID: 38822779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical flow cell enabling operando probing of electrocatalyst surfaces by X-ray spectroscopy and diffraction.
    Farmand M; Landers AT; Lin JC; Feaster JT; Beeman JW; Ye Y; Clark EL; Higgins D; Yano J; Davis RC; Mehta A; Jaramillo TF; Hahn C; Drisdell WS
    Phys Chem Chem Phys; 2019 Mar; 21(10):5402-5408. PubMed ID: 30785434
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Timoshenko J; Roldan Cuenya B
    Chem Rev; 2021 Jan; 121(2):882-961. PubMed ID: 32986414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operando potassium K-edge X-ray absorption spectroscopy: investigating potassium catalysts during soot oxidation.
    Davies CJ; Mayer A; Gabb J; Walls JM; Degirmenci V; Thompson PBJ; Cibin G; Golunski S; Kondrat SA
    Phys Chem Chem Phys; 2020 Sep; 22(34):18976-18988. PubMed ID: 32648863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring the Structural Changes in Iridium Nanoparticles during Oxygen Evolution Electrocatalysis with
    Pittkowski RK; Punke S; Anker AS; Bornet A; Magnard NPL; Schlegel N; Graversen LG; Quinson J; Dworzak A; Oezaslan M; Kirkensgaard JJK; Mirolo M; Drnec J; Arenz M; Jensen KMØ
    J Am Chem Soc; 2024 Oct; 146(40):27517-27527. PubMed ID: 39344255
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Yang Y; Roh I; Louisia S; Chen C; Jin J; Yu S; Salmeron MB; Wang C; Yang P
    J Am Chem Soc; 2022 May; 144(20):8927-8931. PubMed ID: 35575474
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Magnussen OM; Drnec J; Qiu C; Martens I; Huang JJ; Chattot R; Singer A
    Chem Rev; 2024 Feb; 124(3):629-721. PubMed ID: 38253355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemistry of Thin Films with In Situ/Operando Grazing Incidence X-Ray Scattering: Bypassing Electrolyte Scattering for High Fidelity Time Resolved Studies.
    Paulsen BD; Giovannitti A; Wu R; Strzalka J; Zhang Q; Rivnay J; Takacs CJ
    Small; 2021 Oct; 17(42):e2103213. PubMed ID: 34549509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ/Operando X-ray Spectroscopies for Advanced Investigation of Energy Materials.
    Dong CL; Vayssieres L
    Chemistry; 2018 Dec; 24(69):18356-18373. PubMed ID: 30300939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What X-Ray Absorption Spectroscopy Can Tell Us About the Active State of Earth-Abundant Electrocatalysts for the Oxygen Evolution Reaction.
    Risch M; Morales DM; Villalobos J; Antipin D
    Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202211949. PubMed ID: 36129132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel electrochemical flow-cell for
    Paparoni F; Alizon G; Zitolo A; Rezvani SJ; Di Cicco A; Magnan H; Fonda E
    Phys Chem Chem Phys; 2024 Jan; 26(5):3897-3906. PubMed ID: 38230576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of photochemical and electrochemical cells for
    Khare R; Jentys A; Lercher JA
    Phys Chem Chem Phys; 2020 Sep; 22(34):18891-18901. PubMed ID: 32350496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray Spectroscopy at the SuperXAS and Debye Beamlines: from in situ to Operando.
    Bugaev A; Clark AH; Genz NS; Safonova OV; Smolentsev G; Nachtegaal M
    Chimia (Aarau); 2024 May; 78(5):304-312. PubMed ID: 38822773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operando X-ray Absorption Spectroscopy Study of SnO
    Fang L; Lyu X; Xu JJ; Liu Y; Hu X; Reinhart BJ; Li T
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55636-55643. PubMed ID: 36508584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic reactor for operando spatially resolved structure-activity profiling using high-energy X-ray diffraction.
    Wollak B; Espinoza D; Dippel AC; Sturm M; Vrljic F; Gutowski O; Nielsen IG; Sheppard TL; Korup O; Horn R
    J Synchrotron Radiat; 2023 May; 30(Pt 3):571-581. PubMed ID: 37042662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beam damage in operando X-ray diffraction studies of Li-ion batteries.
    Christensen CK; Karlsen MA; Drejer AØ; Andersen BP; Jakobsen CL; Johansen M; Sørensen DR; Kantor I; Jørgensen MRV; Ravnsbæk DB
    J Synchrotron Radiat; 2023 May; 30(Pt 3):561-570. PubMed ID: 36952234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operando Spectroscopy to Understand Dynamic Structural Changes of Solid Catalysts.
    Sarma BB; Grunwaldt JD
    Chimia (Aarau); 2024 May; 78(5):288-296. PubMed ID: 38822771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates.
    Rupprechter G
    Small; 2021 Jul; 17(27):e2004289. PubMed ID: 33694320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.