These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 39388691)

  • 1. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats.
    Corboz MR; Nguyen TL; Stautberg A; Cipolla D; Perkins WR; Chapman RW
    J Aerosol Med Pulm Drug Deliv; 2024 Oct; 37(5):241-283. PubMed ID: 39388691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treprostinil palmitil inhibits the hemodynamic and histopathological changes in the pulmonary vasculature and heart in an animal model of pulmonary arterial hypertension.
    Corboz MR; Plaunt AJ; Malinin V; Li Z; Gauani H; Chun D; Cipolla D; Perkins WR; Chapman RW
    Eur J Pharmacol; 2022 Feb; 916():174484. PubMed ID: 34508752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired Pulmonary Arterial Vasoconstriction and Nitric Oxide-Mediated Relaxation Underlie Severe Pulmonary Hypertension in the Sugen-Hypoxia Rat Model.
    Christou H; Hudalla H; Michael Z; Filatava EJ; Li J; Zhu M; Possomato-Vieira JS; Dias-Junior C; Kourembanas S; Khalil RA
    J Pharmacol Exp Ther; 2018 Feb; 364(2):258-274. PubMed ID: 29212831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Inhaled Treprostinil Palmitil, Inhaled and Intravenous Treprostinil, and Oral Selexipag in a Sugen/Hypoxia Rat Model of Pulmonary Arterial Hypertension.
    Corboz MR; Plaunt AJ; Malinin VS; Li Z; Gauani H; Chun D; Cipolla D; Perkins WR; Chapman RW
    J Pharmacol Exp Ther; 2022 Oct; 383(1):103-116. PubMed ID: 36507843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonic anhydrase inhibition improves pulmonary artery reactivity and nitric oxide-mediated relaxation in sugen-hypoxia model of pulmonary hypertension.
    Christou H; Michael Z; Spyropoulos F; Chen Y; Rong D; Khalil RA
    Am J Physiol Regul Integr Comp Physiol; 2021 Jun; 320(6):R835-R850. PubMed ID: 33826428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the Aryl Hydrocarbon Receptor in Sugen 5416-induced Experimental Pulmonary Hypertension.
    Dean A; Gregorc T; Docherty CK; Harvey KY; Nilsen M; Morrell NW; MacLean MR
    Am J Respir Cell Mol Biol; 2018 Mar; 58(3):320-330. PubMed ID: 28956952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell Tracking Suggests Pathophysiological and Therapeutic Role of Bone Marrow Cells in Sugen5416/Hypoxia Rat Model of Pulmonary Arterial Hypertension.
    Miwa H; Sakao S; Sanada TJ; Suzuki H; Hata A; Shiina Y; Kobayashi T; Kato F; Nishimura R; Tanabe N; Voelkel N; Yoshino I; Tatsumi K
    Can J Cardiol; 2021 Jun; 37(6):913-923. PubMed ID: 33609715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi‑omics analysis of right ventricles in rat models of pulmonary arterial hypertension: Consideration of mitochondrial biogenesis by chrysin.
    Kobayashi T; Kim JD; Naito A; Yanagisawa A; Jujo-Sanada T; Kasuya Y; Nakagawa Y; Sakao S; Tatsumi K; Suzuki T
    Int J Mol Med; 2022 May; 49(5):. PubMed ID: 35315498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The selective PGI2 receptor agonist selexipag ameliorates Sugen 5416/hypoxia-induced pulmonary arterial hypertension in rats.
    Honda Y; Kosugi K; Fuchikami C; Kuramoto K; Numakura Y; Kuwano K
    PLoS One; 2020; 15(10):e0240692. PubMed ID: 33057388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of treprostinil in the SU5416-hypoxia model of severe pulmonary arterial hypertension: haemodynamic benefits are not associated with improvements in arterial remodelling.
    Chaudhary KR; Deng Y; Suen CM; Taha M; Petersen TH; Mei SHJ; Stewart DJ
    Br J Pharmacol; 2018 Oct; 175(20):3976-3989. PubMed ID: 30098019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preclinical Investigation of Trifluoperazine as a Novel Therapeutic Agent for the Treatment of Pulmonary Arterial Hypertension.
    Grobs Y; Awada C; Lemay SE; Romanet C; Bourgeois A; Toro V; Nadeau V; Shimauchi K; Orcholski M; Breuils-Bonnet S; Tremblay E; Provencher S; Paulin R; Boucherat O; Bonnet S
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Sugen 5416/Hypoxia Mouse Model of Pulmonary Arterial Hypertension.
    Bueno-Beti C; Hadri L; Hajjar RJ; Sassi Y
    Methods Mol Biol; 2018; 1816():243-252. PubMed ID: 29987825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nintedanib improves cardiac fibrosis but leaves pulmonary vascular remodelling unaltered in experimental pulmonary hypertension.
    Rol N; de Raaf MA; Sun XQ; Kuiper VP; da Silva Gonçalves Bos D; Happé C; Kurakula K; Dickhoff C; Thuillet R; Tu L; Guignabert C; Schalij I; Lodder K; Pan X; Herrmann FE; van Nieuw Amerongen GP; Koolwijk P; Vonk-Noordegraaf A; de Man FS; Wollin L; Goumans MJ; Szulcek R; Bogaard HJ
    Cardiovasc Res; 2019 Feb; 115(2):432-439. PubMed ID: 30032282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial cell-related autophagic pathways in Sugen/hypoxia-exposed pulmonary arterial hypertensive rats.
    Kato F; Sakao S; Takeuchi T; Suzuki T; Nishimura R; Yasuda T; Tanabe N; Tatsumi K
    Am J Physiol Lung Cell Mol Physiol; 2017 Nov; 313(5):L899-L915. PubMed ID: 28798259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased MAO-A Activity Promotes Progression of Pulmonary Arterial Hypertension.
    Sun XQ; Peters EL; Schalij I; Axelsen JB; Andersen S; Kurakula K; Gomez-Puerto MC; Szulcek R; Pan X; da Silva Goncalves Bos D; Schiepers REJ; Andersen A; Goumans MJ; Vonk Noordegraaf A; van der Laarse WJ; de Man FS; Bogaard HJ
    Am J Respir Cell Mol Biol; 2021 Mar; 64(3):331-343. PubMed ID: 33264068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRPC4 inactivation confers a survival benefit in severe pulmonary arterial hypertension.
    Alzoubi A; Almalouf P; Toba M; O'Neill K; Qian X; Francis M; Taylor MS; Alexeyev M; McMurtry IF; Oka M; Stevens T
    Am J Pathol; 2013 Dec; 183(6):1779-1788. PubMed ID: 24113457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RP5063, a novel, multimodal, serotonin receptor modulator, prevents Sugen 5416-hypoxia-induced pulmonary arterial hypertension in rats.
    Bhat L; Hawkinson J; Cantillon M; Reddy DG; Bhat SR; Laurent CE; Bouchard A; Biernat M; Salvail D
    Eur J Pharmacol; 2017 Sep; 810():83-91. PubMed ID: 28576407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical role for the advanced glycation end-products receptor in pulmonary arterial hypertension etiology.
    Meloche J; Courchesne A; Barrier M; Carter S; Bisserier M; Paulin R; Lauzon-Joset JF; Breuils-Bonnet S; Tremblay É; Biardel S; Racine C; Courture C; Bonnet P; Majka SM; Deshaies Y; Picard F; Provencher S; Bonnet S
    J Am Heart Assoc; 2013 Jan; 2(1):e005157. PubMed ID: 23525442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic Analysis of Right Ventricular Remodeling in Two Rat Models of Pulmonary Hypertension: Identification and Validation of Epithelial-to-Mesenchymal Transition in Human Right Ventricular Failure.
    Park JF; Clark VR; Banerjee S; Hong J; Razee A; Williams T; Fishbein G; Saddic L; Umar S
    Circ Heart Fail; 2021 Feb; 14(2):e007058. PubMed ID: 33541093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonic Anhydrase Inhibition Ameliorates Inflammation and Experimental Pulmonary Hypertension.
    Hudalla H; Michael Z; Christodoulou N; Willis GR; Fernandez-Gonzalez A; Filatava EJ; Dieffenbach P; Fredenburgh LE; Stearman RS; Geraci MW; Kourembanas S; Christou H
    Am J Respir Cell Mol Biol; 2019 Oct; 61(4):512-524. PubMed ID: 30951642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.