These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 39390604)

  • 1. A deep learning model to enhance the classification of primary bone tumors based on incomplete multimodal images in X-ray, CT, and MRI.
    Song L; Li C; Tan L; Wang M; Chen X; Ye Q; Li S; Zhang R; Zeng Q; Xie Z; Yang W; Zhao Y
    Cancer Imaging; 2024 Oct; 24(1):135. PubMed ID: 39390604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning-machine learning fusion approach for the classification of benign, malignant, and intermediate bone tumors.
    Liu R; Pan D; Xu Y; Zeng H; He Z; Lin J; Zeng W; Wu Z; Luo Z; Qin G; Chen W
    Eur Radiol; 2022 Feb; 32(2):1371-1383. PubMed ID: 34432121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic detection, segmentation, and classification of primary bone tumors and bone infections using an ensemble multi-task deep learning framework on multi-parametric MRIs: a multi-center study.
    Ye Q; Yang H; Lin B; Wang M; Song L; Xie Z; Lu Z; Feng Q; Zhao Y
    Eur Radiol; 2024 Jul; 34(7):4287-4299. PubMed ID: 38127073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A radiograph-based deep learning model improves radiologists' performance for classification of histological types of primary bone tumors: A multicenter study.
    Xie Z; Zhao H; Song L; Ye Q; Zhong L; Li S; Zhang R; Wang M; Chen X; Lu Z; Yang W; Zhao Y
    Eur J Radiol; 2024 Jul; 176():111496. PubMed ID: 38733705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and evaluation of machine learning models based on X-ray radiomics for the classification and differentiation of malignant and benign bone tumors.
    von Schacky CE; Wilhelm NJ; Schäfer VS; Leonhardt Y; Jung M; Jungmann PM; Russe MF; Foreman SC; Gassert FG; Gassert FT; Schwaiger BJ; Mogler C; Knebel C; von Eisenhart-Rothe R; Makowski MR; Woertler K; Burgkart R; Gersing AS
    Eur Radiol; 2022 Sep; 32(9):6247-6257. PubMed ID: 35396665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists.
    Yu T; Yu R; Liu M; Wang X; Zhang J; Zheng Y; Lv F
    Eur J Radiol; 2024 Aug; 177():111556. PubMed ID: 38875748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of metadata in multimodal classification of bone tumours.
    Hinterwimmer F; Guenther M; Consalvo S; Neumann J; Gersing A; Woertler K; von Eisenhart-Rothe R; Burgkart R; Rueckert D
    BMC Musculoskelet Disord; 2024 Oct; 25(1):822. PubMed ID: 39427131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the differential diagnosis of benign and malignant breast lesions using a deep learning model based on multimodal images.
    Du Y; Wang D; Liu M; Zhang X; Ren W; Sun J; Yin C; Yang S; Zhang L
    J Cancer Res Ther; 2024 Apr; 20(2):625-632. PubMed ID: 38687933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: A preliminary study.
    Gao X; Wang X
    Diagn Interv Imaging; 2020 Feb; 101(2):91-100. PubMed ID: 31375430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based classification of primary bone tumors on radiographs: A preliminary study.
    He Y; Pan I; Bao B; Halsey K; Chang M; Liu H; Peng S; Sebro RA; Guan J; Yi T; Delworth AT; Eweje F; States LJ; Zhang PJ; Zhang Z; Wu J; Peng X; Bai HX
    EBioMedicine; 2020 Dec; 62():103121. PubMed ID: 33232868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing a Deep Learning Radiomics Model Based on X-ray Images and Clinical Data for Predicting and Distinguishing Acute and Chronic Osteoporotic Vertebral Fractures: A Multicenter Study.
    Zhang J; Xia L; Tang J; Xia J; Liu Y; Zhang W; Liu J; Liang Z; Zhang X; Zhang L; Tang G
    Acad Radiol; 2024 May; 31(5):2011-2026. PubMed ID: 38016821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning for Classification of Bone Lesions on Routine MRI.
    Eweje FR; Bao B; Wu J; Dalal D; Liao WH; He Y; Luo Y; Lu S; Zhang P; Peng X; Sebro R; Bai HX; States L
    EBioMedicine; 2021 Jun; 68():103402. PubMed ID: 34098339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an AI system for accurately diagnose hepatocellular carcinoma from computed tomography imaging data.
    Wang M; Fu F; Zheng B; Bai Y; Wu Q; Wu J; Sun L; Liu Q; Liu M; Yang Y; Shen H; Kong D; Ma X; You P; Li X; Tian F
    Br J Cancer; 2021 Oct; 125(8):1111-1121. PubMed ID: 34365472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions.
    Eiber M; Takei T; Souvatzoglou M; Mayerhoefer ME; Fürst S; Gaertner FC; Loeffelbein DJ; Rummeny EJ; Ziegler SI; Schwaiger M; Beer AJ
    J Nucl Med; 2014 Feb; 55(2):191-7. PubMed ID: 24309383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.
    Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK
    Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting Adverse Pathology of Prostate Cancer With a Deep Learning Approach Based on a 3D Swin-Transformer Model and Biparametric MRI: A Multicenter Retrospective Study.
    Zhao L; Bao J; Wang X; Qiao X; Shen J; Zhang Y; Jin P; Ji Y; Zhang J; Su Y; Ji L; Li Z; Lu J; Hu C; Shen H; Tian J; Liu J
    J Magn Reson Imaging; 2024 Jun; 59(6):2101-2112. PubMed ID: 37602942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Machine Learning to Unravel the Value of Radiographic Features for the Classification of Bone Tumors.
    Pan D; Liu R; Zheng B; Yuan J; Zeng H; He Z; Luo Z; Qin G; Chen W
    Biomed Res Int; 2021; 2021():8811056. PubMed ID: 33791381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Obstructive Sleep Apnea Based on Computed Tomography Scans Using Deep Learning Models.
    Kim JW; Lee K; Kim HJ; Park HC; Hwang JY; Park SW; Kong HJ; Kim JY
    Am J Respir Crit Care Med; 2024 Jul; 210(2):211-221. PubMed ID: 38471111
    [No Abstract]   [Full Text] [Related]  

  • 20. Deep learning-assisted diagnosis of benign and malignant parotid tumors based on ultrasound: a retrospective study.
    Jiang T; Chen C; Zhou Y; Cai S; Yan Y; Sui L; Lai M; Song M; Zhu X; Pan Q; Wang H; Chen X; Wang K; Xiong J; Chen L; Xu D
    BMC Cancer; 2024 Apr; 24(1):510. PubMed ID: 38654281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.