These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 39390942)
1. [Transoral robotic surgery in pharyngolaryngeal surgery]. Hu X; Qin Y Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2024 Oct; 38(10):979-984. PubMed ID: 39390942 [No Abstract] [Full Text] [Related]
2. Transoral robotic surgery (TORS) in Japan: procedures, advantages and current status. Sano D; Tateya I; Hori R; Ueda T; Mori T; Maruo T; Tsukahara K; Oridate N; Jpn J Clin Oncol; 2024 Mar; 54(3):248-253. PubMed ID: 38061912 [TBL] [Abstract][Full Text] [Related]
3. Perioperative safety, feasibility, and oncologic utility of transoral robotic surgery with da Vinci Xi platform. Gabrysz-Forget F; Mur T; Dolan R; Yarlagadda B J Robot Surg; 2020 Feb; 14(1):85-89. PubMed ID: 30825098 [TBL] [Abstract][Full Text] [Related]
4. [Exploration of feasibility and safety of transoral robotic surgery in pharyngolaryngeal tumors]. Fang JG; Meng LZ; Wang JH; Yuan XD; Rao YS; Yang F; Feng YJ; Wei YX Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2018 Jul; 53(7):512-518. PubMed ID: 30032494 [No Abstract] [Full Text] [Related]
5. Transoral robotic surgery (TORS) for benign pharyngeal lesions. Chan JY; Richmon JD Otolaryngol Clin North Am; 2014 Jun; 47(3):407-13. PubMed ID: 24882798 [TBL] [Abstract][Full Text] [Related]
6. Transoral robotic surgery for sellar tumors: first clinical study. Chauvet D; Hans S; Missistrano A; Rebours C; Bakkouri WE; Lot G J Neurosurg; 2017 Oct; 127(4):941-948. PubMed ID: 28009229 [TBL] [Abstract][Full Text] [Related]
7. Is the Da Vinci Xi system a real improvement for oncologic transoral robotic surgery? A systematic review of the literature. Fiacchini G; Vianini M; Dallan I; Bruschini L J Robot Surg; 2021 Feb; 15(1):1-12. PubMed ID: 32749569 [TBL] [Abstract][Full Text] [Related]
8. [Feasibility and perioperative safety of transoral robotic surgery with da Vinci Xi platform]. Xu CZ; Wu CP; Chi-Yao JY; Zhou L; Tao L Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2022 May; 57(5):565-571. PubMed ID: 35610674 [No Abstract] [Full Text] [Related]
9. [Advances in transoral robotic surgery]. Mattheis S; Kansy B; Haßkamp P; Holtmann L; Lang S HNO; 2015 Nov; 63(11):752-7. PubMed ID: 26449670 [TBL] [Abstract][Full Text] [Related]
10. Transoral robotic excision of laryngocele: Surgical considerations. Patel KB; Lin C; Kramer S; Fada C; Ozer E Head Neck; 2019 Apr; 41(4):1140-1143. PubMed ID: 30652374 [TBL] [Abstract][Full Text] [Related]
11. Early results of a safety and feasibility clinical trial of a novel single-port flexible robot for transoral robotic surgery. Chan JYK; Wong EWY; Tsang RK; Holsinger FC; Tong MCF; Chiu PWY; Ng SSM Eur Arch Otorhinolaryngol; 2017 Nov; 274(11):3993-3996. PubMed ID: 28871410 [TBL] [Abstract][Full Text] [Related]
12. [Application of transoral robotic surgery in pharyngolaryngeal tumour resection]. Chen W; Xu FL; Chen Y; Zhang Y; Wu KM; Cheng Y; Ji JF; Zheng HL Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Sep; 51(9):695-698. PubMed ID: 27666710 [No Abstract] [Full Text] [Related]
13. Feasibility and safety of the da Vinci Xi surgical robot for transoral robotic surgery. Olson B; Cahill E; Imanguli M J Robot Surg; 2023 Apr; 17(2):571-576. PubMed ID: 35972598 [TBL] [Abstract][Full Text] [Related]
14. Transoral Robotic Surgical Proficiency Via Real-Time Tactile Collision Awareness System. Mendelsohn AH; Kim C; Song J; Singh A; Le T; Abiri A; Berke GS; Geoghegan R Laryngoscope; 2020 Dec; 130 Suppl 6():S1-S17. PubMed ID: 32865822 [TBL] [Abstract][Full Text] [Related]
15. Robotic Head and Neck Surgery. Finegersh A; Holsinger FC; Gross ND; Orosco RK Surg Oncol Clin N Am; 2019 Jan; 28(1):115-128. PubMed ID: 30414677 [TBL] [Abstract][Full Text] [Related]
16. [Preparing for minimally invasive pharyngolaryngeal surgery in the new era]. Li JR Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2024 Oct; 59(10):987-989. PubMed ID: 39449599 [TBL] [Abstract][Full Text] [Related]
17. Palatal surgery in a transoral robotic setting (TORS): preliminary results of a retrospective comparison between uvulopalatopharyngoplasty (UPPP), expansion sphincter pharyngoplasty (ESP) and barbed repositioning pharyngoplasty (BRP). Cammaroto G; Montevecchi F; D'Agostino G; Zeccardo E; Bellini C; Meccariello G; Vicini C Acta Otorhinolaryngol Ital; 2017 Oct; 37(5):406-409. PubMed ID: 28530254 [TBL] [Abstract][Full Text] [Related]
18. The Patient Perspective: Evaluating the Accessibility of Transoral Robotic Surgery Online Resources. Xing MH; Chai RL Ann Otol Rhinol Laryngol; 2022 Jan; 131(1):27-38. PubMed ID: 33843290 [TBL] [Abstract][Full Text] [Related]
19. Feasibility and clinical outcomes of transoral robotic surgery and transoral robot-assisted carbon dioxide laser for hypopharyngeal carcinoma. Durmus K; Kucur C; Uysal IO; Dziegielewski PT; Ozer E J Craniofac Surg; 2015 Jan; 26(1):235-7. PubMed ID: 25478973 [TBL] [Abstract][Full Text] [Related]
20. Robotic Head and Neck Surgery: History, Technical Evolution and the Future. Garas G; Arora A ORL J Otorhinolaryngol Relat Spec; 2018; 80(3-4):117-124. PubMed ID: 29925061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]