These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3939139)

  • 1. Paraquat and ferritin-dependent lipid peroxidation.
    Saito M; Thomas CE; Aust SD
    J Free Radic Biol Med; 1985; 1(3):179-85. PubMed ID: 3939139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferritin and superoxide-dependent lipid peroxidation.
    Thomas CE; Morehouse LA; Aust SD
    J Biol Chem; 1985 Mar; 260(6):3275-80. PubMed ID: 2982854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstituted microsomal lipid peroxidation: ADP-Fe3+-dependent peroxidation of phospholipid vesicles containing NADPH-cytochrome P450 reductase and cytochrome P450.
    Morehouse LA; Aust SD
    Free Radic Biol Med; 1988; 4(5):269-77. PubMed ID: 3129344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rat liver microsomal NADPH-dependent release of iron from ferritin and lipid peroxidation.
    Thomas CE; Aust SD
    J Free Radic Biol Med; 1985; 1(4):293-300. PubMed ID: 3013980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paraquat and NADPH-dependent lipid peroxidation in lung microsomes.
    Misra HP; Gorsky LD
    J Biol Chem; 1981 Oct; 256(19):9994-8. PubMed ID: 7275991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsomal reduction of low-molecular-weight Fe3+ chelates and ferritin: enhancement by adriamycin, paraquat, menadione, and anthraquinone 2-sulfonate and inhibition by oxygen.
    Vile GF; Winterbourn CC
    Arch Biochem Biophys; 1988 Dec; 267(2):606-13. PubMed ID: 2850767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferritin, lipid peroxidation and redox-cycling xenobiotics.
    Winterbourn CC; Vile GF; Monteiro HP
    Free Radic Res Commun; 1991; 12-13 Pt 1():107-14. PubMed ID: 1649077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the ability of ferric complexes to catalyze microsomal chemiluminescence, lipid peroxidation, and hydroxyl radical generation.
    Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1988 Aug; 264(2):482-91. PubMed ID: 2840858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetravalent vanadium releases ferritin iron which stimulates vanadium-dependent lipid peroxidation.
    Monteiro HP; Winterbourn CC; Stern A
    Free Radic Res Commun; 1991; 12-13 Pt 1():125-9. PubMed ID: 1649080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation.
    Monteiro HP; Winterbourn CC
    Biochem Pharmacol; 1989 Dec; 38(23):4177-82. PubMed ID: 2512934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The involvement of superoxide and iron ions in the NADPH-dependent lipid peroxidation in human placental mitochondria.
    Klimek J
    Biochim Biophys Acta; 1988 Jan; 958(1):31-9. PubMed ID: 2825815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive release of iron from ferritin by cation free radicals of paraquat and other bipyridyls.
    Thomas CE; Aust SD
    J Biol Chem; 1986 Oct; 261(28):13064-70. PubMed ID: 3020022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of Fe2+-ADP and the relative unimportance of OH in the mechanism of mitomycin C-induced lipid peroxidation.
    Nakano H; Sugioka K; Nakano M; Mizukami M; Kimura H; Tero-Kubota S; Ikegami Y
    Biochim Biophys Acta; 1984 Dec; 796(3):285-93. PubMed ID: 6095916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsomal lipid peroxidation: the role of NADPH--cytochrome P450 reductase and cytochrome P450.
    Sevanian A; Nordenbrand K; Kim E; Ernster L; Hochstein P
    Free Radic Biol Med; 1990; 8(2):145-52. PubMed ID: 2110108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic interactions between NADPH-cytochrome P-450 reductase, paraquat, and iron in the generation of active oxygen radicals.
    Clejan L; Cederbaum AI
    Biochem Pharmacol; 1989 Jun; 38(11):1779-86. PubMed ID: 2500125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of iron from ferritin by divicine, isouramil, acid-hydrolyzed vicine, and dialuric acid and initiation of lipid peroxidation.
    Monteiro HP; Winterbourn CC
    Arch Biochem Biophys; 1989 Jun; 271(2):536-45. PubMed ID: 2730003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation into the mechanism of citrate-Fe2+-dependent lipid peroxidation.
    Minotti G; Aust SD
    Free Radic Biol Med; 1987; 3(6):379-87. PubMed ID: 3123331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.