These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 39391747)

  • 1. Validations of various in-hand object manipulation strategies employing a novel tactile sensor developed for an under-actuated robot hand.
    Singh A; Pinto M; Kaltsas P; Pirozzi S; Sulaiman S; Ficuciello F
    Front Robot AI; 2024; 11():1460589. PubMed ID: 39391747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Calibration of a Force/Tactile Sensor for Dexterous Manipulation.
    Costanzo M; De Maria G; Natale C; Pirozzi S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grasping Force Control of Multi-Fingered Robotic Hands through Tactile Sensing for Object Stabilization.
    Deng Z; Jonetzko Y; Zhang L; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control framework for dexterous manipulation using dynamic visual servoing and tactile sensors' feedback.
    Jara CA; Pomares J; Candelas FA; Torres F
    Sensors (Basel); 2014 Jan; 14(1):1787-804. PubMed ID: 24451466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Magnetic Skin Sensor Array for Torsion Perception.
    Stawikowska L; Engeberg ED
    Proc Fla Conf Recent Adv Robot; 2023 May; 2023(1):. PubMed ID: 37794983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Electronic Skin for Monitoring of Grasping State During Robotic Manipulation.
    Bao L; Han C; Li G; Chen J; Wang W; Yang H; Huang X; Guo J; Wu H
    Soft Robot; 2023 Apr; 10(2):336-344. PubMed ID: 36037018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the Orientation of Objects from Tactile Sensing Data Using Machine Learning Methods and Visual Frames of Reference.
    Prado da Fonseca V; Alves de Oliveira TE; Petriu EM
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31108951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning the signatures of the human grasp using a scalable tactile glove.
    Sundaram S; Kellnhofer P; Li Y; Zhu JY; Torralba A; Matusik W
    Nature; 2019 May; 569(7758):698-702. PubMed ID: 31142856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Tactile Temporal Features for Object Pose Estimation during Robotic Manipulation.
    Galaiya VR; Asfour M; Alves de Oliveira TE; Jiang X; Prado da Fonseca V
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks.
    Melnik A; Lach L; Plappert M; Korthals T; Haschke R; Ritter H
    Front Robot AI; 2021; 8():538773. PubMed ID: 34268337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tactile Feedback in Upper Limb Prosthetic Devices Using Flexible Textile Force Sensors.
    Osborn L; Lee WW; Kaliki R; Thakor N
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2014 Aug; 2014():114-119. PubMed ID: 33936859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using 3D Convolutional Neural Networks for Tactile Object Recognition with Robotic Palpation.
    Pastor F; Gandarias JM; García-Cerezo AJ; Gómez-de-Gabriel JM
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Fully Flexible Tactile Pressure Sensor with Bilayer Interlaced Bumps for Robotic Grasping Applications.
    Zhu L; Wang Y; Mei D; Jiang C
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32806604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Accessible, Open-Source Dexterity Test: Evaluating the Grasping and Dexterous Manipulation Capabilities of Humans and Robots.
    Elangovan N; Chang CM; Gao G; Liarokapis M
    Front Robot AI; 2022; 9():808154. PubMed ID: 35546901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.
    Mateo CM; Gil P; Torres F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blocks World of Touch: Exploiting the Advantages of All-Around Finger Sensing in Robot Grasping.
    Gomes DF; Lin Z; Luo S
    Front Robot AI; 2020; 7():541661. PubMed ID: 33501310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tactile Model O: Fabrication and Testing of a 3D-Printed, Three-Fingered Tactile Robot Hand.
    James JW; Church A; Cramphorn L; Lepora NF
    Soft Robot; 2021 Oct; 8(5):594-610. PubMed ID: 33337925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Experimental Research of Robot Finger Sliding Tactile Sensor Based on FBG.
    Lu G; Fu S; Xu Y
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Skin-Inspired High-Performance Tactile Sensor for Accurate Recognition of Object Softness.
    Wang S; Fan X; Zhang Z; Su Z; Ding Y; Yang H; Zhang X; Wang J; Zhang J; Hu P
    ACS Nano; 2024 Jul; 18(26):17175-17184. PubMed ID: 38875126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.