These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39391816)
1. Modeling the Distribution and Environmental Preferences of the Ladakh Urial in the Arid Himalayas. Lambe JR; Raza M; Namgail T Ecol Evol; 2024 Oct; 14(10):e70423. PubMed ID: 39391816 [TBL] [Abstract][Full Text] [Related]
2. Predictive modelling of the distribution of Li M; He J; Zhao Z; Lyu R; Yao M; Cheng J; Xie L PeerJ; 2020; 8():e8729. PubMed ID: 32195054 [TBL] [Abstract][Full Text] [Related]
3. Potential distribution of three types of ephemeral plants under climate changes. Lan Z; Huiliang L; Hongxiang Z; Yanfeng C; Lingwei Z; Kudusi K; Taxmamat D; Yuanming Z Front Plant Sci; 2022; 13():1035684. PubMed ID: 36507407 [TBL] [Abstract][Full Text] [Related]
4. Modeling the effects of climate change on the potential distribution of the rangeland species Gymnocarpus decander Forssk (case study: Arid region of southeastern Iran). Narouei M; Javadi SA; Khodagholi M; Jafari M; Azizinejad R Environ Monit Assess; 2021 Dec; 194(1):33. PubMed ID: 34923594 [TBL] [Abstract][Full Text] [Related]
5. Accessing habitat suitability and connectivity for the westernmost population of Asian black bear (Ursus thibetanus gedrosianus, Blanford, 1877) based on climate changes scenarios in Iran. Morovati M; Karami P; Bahadori Amjas F PLoS One; 2020; 15(11):e0242432. PubMed ID: 33206701 [TBL] [Abstract][Full Text] [Related]
6. Gastrointestinal parasites of the wild ungulates (Mammalia: Cetartiodactyla) in the Hemis National Park, Ladakh, India. Zazay J; Bhat BA; Tak H; Lone AN J Parasit Dis; 2024 Mar; 48(1):134-140. PubMed ID: 38440757 [TBL] [Abstract][Full Text] [Related]
7. Habitat Loss in the IUCN Extent: Climate Change-Induced Threat on the Red Goral ( Abedin I; Mukherjee T; Abedin J; Kim HW; Kundu S Biology (Basel); 2024 Aug; 13(9):. PubMed ID: 39336094 [TBL] [Abstract][Full Text] [Related]
8. Multi-scale habitat modeling framework for predicting the potential distribution of sheep gastrointestinal nematodes across Iran's three distinct climatic zones: a MaxEnt machine-learning algorithm. Meshgi B; Hanafi-Bojd AA; Fathi S; Modabbernia G; Meshgi K; Shadman M Sci Rep; 2024 Feb; 14(1):2828. PubMed ID: 38310151 [TBL] [Abstract][Full Text] [Related]
9. Predicting Polygonum capitatum distribution in China across climate scenarios using MaxEnt modeling. Luo J; Ma Y; Liu Y; Zhu D; Guo X Sci Rep; 2024 Aug; 14(1):20020. PubMed ID: 39198562 [TBL] [Abstract][Full Text] [Related]
10. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. Ma B; Sun J BMC Ecol; 2018 Feb; 18(1):10. PubMed ID: 29466976 [TBL] [Abstract][Full Text] [Related]
11. Ecological analysis and environmental niche modelling of Wani IA; Verma S; Mushtaq S; Alsahli AA; Alyemeni MN; Tariq M; Pant S Saudi J Biol Sci; 2021 Apr; 28(4):2109-2122. PubMed ID: 33911927 [TBL] [Abstract][Full Text] [Related]
12. Distribution and extent of suitable habitats of Ruspoli's Turaco (Tauraco ruspolii) and White-cheeked Turaco (Tauraco leucotis) under a changing climate in Ethiopia. Aligaz MA; Kufa CA; Ahmed AS; Argaw HT; Tamrat M; Yihune M; Atickem A; Bekele A; Bogale BA BMC Ecol Evol; 2024 Jun; 24(1):83. PubMed ID: 38902600 [TBL] [Abstract][Full Text] [Related]
13. Predicting present spatial distribution and habitat preferences of commercial fishes using a maximum entropy approach. Sharifian S; Mortazavi MS; Nozar SLM Environ Sci Pollut Res Int; 2023 Jun; 30(30):75300-75313. PubMed ID: 37219769 [TBL] [Abstract][Full Text] [Related]
14. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas. Aschenbach K; Conrad R; Reháková K; Doležal J; Janatková K; Angel R Front Microbiol; 2013; 4():359. PubMed ID: 24348469 [TBL] [Abstract][Full Text] [Related]
15. Early onset of aridity in the past millennium: Insights from vegetation dynamics and climate change in the alpine, cold-desert region of Trans Himalaya, India. Mohanty RB; Mishra AK; Mishra K; Yadava AK; Quamar MF; Barua IC; Kar R PLoS One; 2024; 19(1):e0295785. PubMed ID: 38198444 [TBL] [Abstract][Full Text] [Related]
16. Predicting the geographical distribution and niche characteristics of Huang Q; Liu H; Li C; Zhu X; Yuan Z; Lai J; Cao M; Huang Z; Yang Y; Zhuo S; Lü Z; Zhang G Front Plant Sci; 2024; 15():1360190. PubMed ID: 38779065 [TBL] [Abstract][Full Text] [Related]
17. Hostile Interactions of Punjab Urial ( Khattak RH; Teng L; Mehmood T; Rehman EU; Zhang Z; Liu Z Animals (Basel); 2021 Apr; 11(5):. PubMed ID: 33925204 [TBL] [Abstract][Full Text] [Related]
18. Single-year thermal regime and inferred permafrost occurrence in the upper Ganglass catchment of the cold-arid Himalaya, Ladakh, India. Wani JM; Thayyen RJ; Gruber S; Ojha CSP; Stumm D Sci Total Environ; 2020 Feb; 703():134631. PubMed ID: 31726296 [TBL] [Abstract][Full Text] [Related]
19. Modeling the species occurrence probability and response of climate change on Himalayan Somalata plant under different Shared Socioeconomic Pathways. Anand A; Garg VK Environ Monit Assess; 2024 Jun; 196(7):647. PubMed ID: 38907768 [TBL] [Abstract][Full Text] [Related]
20. Modeling the effect of climate change on the distribution of threatened medicinal orchid Satyrium nepalense D. Don in India. Kumar D; Rawat S Environ Sci Pollut Res Int; 2022 Oct; 29(48):72431-72444. PubMed ID: 35524848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]