These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39392142)

  • 1. A simplified method for theoretical sum frequency generation spectroscopy calculation and interpretation: The "pop model".
    Chen W; Louaas D; Brigiano FS; Pezzotti S; Gaigeot MP
    J Chem Phys; 2024 Oct; 161(14):. PubMed ID: 39392142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function.
    Ohto T; Usui K; Hasegawa T; Bonn M; Nagata Y
    J Chem Phys; 2015 Sep; 143(12):124702. PubMed ID: 26429027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio Modeling of the Vibrational Sum-Frequency Generation Spectrum of Interfacial Water.
    Liang C; Jeon J; Cho M
    J Phys Chem Lett; 2019 Mar; 10(5):1153-1158. PubMed ID: 30802060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deconvolution of BIL-SFG and DL-SFG spectroscopic signals reveals order/disorder of water at the elusive aqueous silica interface.
    Pezzotti S; Galimberti DR; Gaigeot MP
    Phys Chem Chem Phys; 2019 Oct; 21(40):22188-22202. PubMed ID: 31441490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the molecular structures of α-Al2O3(0001)-water interface by machine learning based computational vibrational spectroscopy.
    Du X; Shao W; Bao C; Zhang L; Cheng J; Tang F
    J Chem Phys; 2024 Sep; 161(12):. PubMed ID: 39315880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation.
    Tang F; Ohto T; Sun S; Rouxel JR; Imoto S; Backus EHG; Mukamel S; Bonn M; Nagata Y
    Chem Rev; 2020 Apr; 120(8):3633-3667. PubMed ID: 32141737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and sum-frequency generation spectra of water on uncharged Q
    Smirnov KS
    Phys Chem Chem Phys; 2020 Jan; 22(4):2033-2045. PubMed ID: 31904065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular structure of poly(methyl methacrylate) surface. I. Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations.
    Zhu H; Jha KC; Bhatta RS; Tsige M; Dhinojwala A
    Langmuir; 2014 Oct; 30(39):11609-18. PubMed ID: 25215928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of the Bending Mode of Interfacial Water at Silica Surfaces by Near-Infrared Vibrational Sum-Frequency Generation Spectroscopy of the [Stretch + Bend] Combination Bands.
    Isaienko O; Nihonyanagi S; Sil D; Borguet E
    J Phys Chem Lett; 2013 Feb; 4(3):531-5. PubMed ID: 26281750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical description of the polarization dependence of the sum frequency generation spectroscopy of the water/vapor interface.
    Perry A; Neipert C; Kasprzyk CR; Green T; Space B; Moore PB
    J Chem Phys; 2005 Oct; 123(14):144705. PubMed ID: 16238414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy.
    Morita A; Ishiyama T
    Phys Chem Chem Phys; 2008 Oct; 10(38):5801-16. PubMed ID: 18818831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sum Frequency Generation Spectra from Velocity-Velocity Correlation Functions.
    Khatib R; Sulpizi M
    J Phys Chem Lett; 2017 Mar; 8(6):1310-1314. PubMed ID: 28247752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational Sum-Frequency Generation Spectroscopy in the Energy Representation from Dual-Level Molecular Dynamics Simulations.
    Martins-Costa MTC; Ruiz-López MF
    J Phys Chem A; 2020 Jul; 124(27):5675-5683. PubMed ID: 32520558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Oxidation Level on the Interfacial Water at the Graphene Oxide-Water Interface: From Spectroscopic Signatures to Hydrogen-Bonding Environment.
    David R; Tuladhar A; Zhang L; Arges C; Kumar R
    J Phys Chem B; 2020 Sep; 124(37):8167-8178. PubMed ID: 32804501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dielectric function profile across the water interface through surface-specific vibrational spectroscopy and simulations.
    Chiang KY; Seki T; Yu CC; Ohto T; Hunger J; Bonn M; Nagata Y
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2204156119. PubMed ID: 36037357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Fresnel factor correction of sum-frequency generation spectra of interfacial water.
    Yu X; Chiang KY; Yu CC; Bonn M; Nagata Y
    J Chem Phys; 2023 Jan; 158(4):044701. PubMed ID: 36725499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and dynamics of water at water-graphene and water-hexagonal boron-nitride sheet interfaces revealed by ab initio sum-frequency generation spectroscopy.
    Ohto T; Tada H; Nagata Y
    Phys Chem Chem Phys; 2018 May; 20(18):12979-12985. PubMed ID: 29707716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively.
    Ni Y; Skinner JL
    J Chem Phys; 2015 Jul; 143(1):014502. PubMed ID: 26156483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural definition of the BIL and DL: a new universal methodology to rationalize non-linear χ
    Pezzotti S; Galimberti DR; Shen YR; Gaigeot MP
    Phys Chem Chem Phys; 2018 Feb; 20(7):5190-5199. PubMed ID: 29393945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.