These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 39392391)
1. Initiation of tumor dormancy by the lymphovascular embolus. Ye Y; Wang J; Izban MG; Ballard BR; Barsky SH Oncotarget; 2024 Oct; 15():726-740. PubMed ID: 39392391 [TBL] [Abstract][Full Text] [Related]
2. Tumor Dormancy Within the Lymphovascular Embolus Is Regulated by Multiple Metabolism-signaling Pathways. Ye Y; Wang J; Dillard J; Barsky SH Anticancer Res; 2024 Oct; 44(10):4165-4173. PubMed ID: 39348960 [TBL] [Abstract][Full Text] [Related]
3. Geometric tumor embolic budding characterizes inflammatory breast cancer. Modi AP; Nguyen JPT; Wang J; Ahn JS; Libling WA; Klein JM; Mazumder P; Barsky SH Breast Cancer Res Treat; 2023 Feb; 197(3):461-478. PubMed ID: 36473978 [TBL] [Abstract][Full Text] [Related]
4. Breast carcinomatous tumoral emboli can result from encircling lymphovasculogenesis rather than lymphovascular invasion. Mahooti S; Porter K; Alpaugh ML; Ye Y; Xiao Y; Jones S; Tellez JD; Barsky SH Oncotarget; 2010 Jun; 1(2):131-147. PubMed ID: 21297224 [TBL] [Abstract][Full Text] [Related]
5. The genesis and unique properties of the lymphovascular tumor embolus are because of calpain-regulated proteolysis of E-cadherin. Ye Y; Tian H; Lange AR; Yearsley K; Robertson FM; Barsky SH Oncogene; 2013 Mar; 32(13):1702-13. PubMed ID: 22580607 [TBL] [Abstract][Full Text] [Related]
6. Early to intermediate steps of tumor embolic formation involve specific proteolytic processing of E-cadherin regulated by Rab7. Ye Y; Gao JX; Tian H; Yearsley K; Lange AR; Robertson FM; Barsky SH Mol Cancer Res; 2012 Jun; 10(6):713-26. PubMed ID: 22638108 [TBL] [Abstract][Full Text] [Related]
7. An intact overexpressed E-cadherin/alpha,beta-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Tomlinson JS; Alpaugh ML; Barsky SH Cancer Res; 2001 Jul; 61(13):5231-41. PubMed ID: 11431364 [TBL] [Abstract][Full Text] [Related]
8. E-cadherin accumulation within the lymphovascular embolus of inflammatory breast cancer is due to altered trafficking. Ye Y; Tellez JD; Durazo M; Belcher M; Yearsley K; Barsky SH Anticancer Res; 2010 Oct; 30(10):3903-10. PubMed ID: 21036701 [TBL] [Abstract][Full Text] [Related]
9. The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Xiao Y; Ye Y; Yearsley K; Jones S; Barsky SH Am J Pathol; 2008 Aug; 173(2):561-74. PubMed ID: 18599608 [TBL] [Abstract][Full Text] [Related]
10. Relationship of sialyl-Lewis(x/a) underexpression and E-cadherin overexpression in the lymphovascular embolus of inflammatory breast carcinoma. Alpaugh ML; Tomlinson JS; Ye Y; Barsky SH Am J Pathol; 2002 Aug; 161(2):619-28. PubMed ID: 12163386 [TBL] [Abstract][Full Text] [Related]
11. Gain in cellular organization of inflammatory breast cancer: A 3D in vitro model that mimics the in vivo metastasis. Morales J; Alpaugh ML BMC Cancer; 2009 Dec; 9():462. PubMed ID: 20028562 [TBL] [Abstract][Full Text] [Related]
12. Cooperative role of E-cadherin and sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumor emboli in inflammatory breast carcinoma. Alpaugh ML; Tomlinson JS; Kasraeian S; Barsky SH Oncogene; 2002 May; 21(22):3631-43. PubMed ID: 12032865 [TBL] [Abstract][Full Text] [Related]
13. Reversible model of spheroid formation allows for high efficiency of gene delivery ex vivo and accurate gene assessment in vivo. Alpaugh ML; Barsky SH Hum Gene Ther; 2002 Jul; 13(10):1245-58. PubMed ID: 12133277 [TBL] [Abstract][Full Text] [Related]
14. The lymphovascular embolus of inflammatory breast cancer exhibits a Notch 3 addiction. Xiao Y; Ye Y; Zou X; Jones S; Yearsley K; Shetuni B; Tellez J; Barsky SH Oncogene; 2011 Jan; 30(3):287-300. PubMed ID: 20838375 [TBL] [Abstract][Full Text] [Related]
15. PLEKHA7, an Apical Adherens Junction Protein, Suppresses Inflammatory Breast Cancer in the Context of High E-Cadherin and p120-Catenin Expression. Pence LJ; Kourtidis A; Feathers RW; Haddad MT; Sotiriou S; Decker PA; Nassar A; Ocal IT; Shah SS; Anastasiadis PZ Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33525380 [TBL] [Abstract][Full Text] [Related]
16. Significance of lymph vessel invasion identified by the endothelial lymphatic marker D2-40 in node negative breast cancer. Arnaout-Alkarain A; Kahn HJ; Narod SA; Sun PA; Marks AN Mod Pathol; 2007 Feb; 20(2):183-91. PubMed ID: 17206106 [TBL] [Abstract][Full Text] [Related]
17. Modeling and characterization of inflammatory breast cancer emboli grown in vitro. Lehman HL; Dashner EJ; Lucey M; Vermeulen P; Dirix L; Van Laere S; van Golen KL Int J Cancer; 2013 May; 132(10):2283-94. PubMed ID: 23129218 [TBL] [Abstract][Full Text] [Related]
18. [Comparison of epithelial-mesenchymal transition-related markers between cancer tissue and tumor emboli]. He N; Wu GF; Zhao HY; Han HX Zhonghua Bing Li Xue Za Zhi; 2011 Nov; 40(11):758-61. PubMed ID: 22336160 [TBL] [Abstract][Full Text] [Related]
19. p70S6 kinase mediates breast cancer cell survival in response to surgical wound fluid stimulation. Segatto I; Berton S; Sonego M; Massarut S; Fabris L; Armenia J; Mileto M; Colombatti A; Vecchione A; Baldassarre G; Belletti B Mol Oncol; 2014 May; 8(3):766-80. PubMed ID: 24661902 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of E-cadherin, Ki-67 and lymphatic vessel invasion in abdominal metastases of human breast cancer. Debald M; Kaiser C; Abramian A; Schildhaus HU; Locher P; Wolfgarten M; Kuhn W; Braun M Anticancer Res; 2013 May; 33(5):1971-5. PubMed ID: 23645745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]