These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 39394824)
1. Catalyst Design and Engineering for CO Peramaiah K; Yi M; Dutta I; Chatterjee S; Zhang H; Lai Z; Huang KW Adv Mater; 2024 Oct; ():e2404980. PubMed ID: 39394824 [TBL] [Abstract][Full Text] [Related]
2. Toward Methanol Production by CO Onishi N; Himeda Y Acc Chem Res; 2024 Oct; 57(19):2816-2825. PubMed ID: 39284577 [TBL] [Abstract][Full Text] [Related]
3. Renewable Hydrogen Production and Storage Via Enzymatic Interconversion of CO Sapountzaki E; Rova U; Christakopoulos P; Antonopoulou I ChemSusChem; 2023 Sep; 16(17):e202202312. PubMed ID: 37165995 [TBL] [Abstract][Full Text] [Related]
5. Recent Developments in Reversible CO Kushwaha S; Parthiban J; Singh SK ACS Omega; 2023 Oct; 8(42):38773-38793. PubMed ID: 37901502 [TBL] [Abstract][Full Text] [Related]
6. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts. Bernskoetter WH; Hazari N Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247 [TBL] [Abstract][Full Text] [Related]
7. Catalysts for Liquid Organic Hydrogen Carriers (LOHCs): Efficient Storage and Transport for Renewable Energy. Alghamdi HS; Ali A; Ajeebi AM; Jedidi A; Sanhoob M; Aktary M; Shabi AH; Usman M; Alghamdi W; Alzahrani S; Abdul Aziz M; Shaikh MN Chem Rec; 2024 Oct; ():e202400082. PubMed ID: 39385654 [TBL] [Abstract][Full Text] [Related]
11. Tuning Two-Electron Oxygen-Reduction Pathways for H Yang X; Zeng Y; Alnoush W; Hou Y; Higgins D; Wu G Adv Mater; 2022 Jun; 34(23):e2107954. PubMed ID: 35133688 [TBL] [Abstract][Full Text] [Related]
12. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes. Kaczur JJ; Yang H; Liu Z; Sajjad SD; Masel RI Front Chem; 2018; 6():263. PubMed ID: 30018951 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical Reduction of CO Zeng J; Castellino M; Fontana M; Sacco A; Monti NBD; Chiodoni A; Pirri CF Front Chem; 2022; 10():931767. PubMed ID: 35873051 [TBL] [Abstract][Full Text] [Related]
14. Hydrogen storage and delivery: the carbon dioxide - formic acid couple. Laurenczy G Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175 [TBL] [Abstract][Full Text] [Related]
15. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon. Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650 [TBL] [Abstract][Full Text] [Related]
16. PdAg Nanoparticles within Core-Shell Structured Zeolitic Imidazolate Framework as a Dual Catalyst for Formic Acid-based Hydrogen Storage/Production. Wen M; Mori K; Futamura Y; Kuwahara Y; Navlani-García M; An T; Yamashita H Sci Rep; 2019 Oct; 9(1):15675. PubMed ID: 31666596 [TBL] [Abstract][Full Text] [Related]
17. Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature. Sordakis K; Tsurusaki A; Iguchi M; Kawanami H; Himeda Y; Laurenczy G Chemistry; 2016 Oct; 22(44):15605-15608. PubMed ID: 27582027 [TBL] [Abstract][Full Text] [Related]
18. A Prospective Life Cycle Assessment of Electrochemical CO Ai L; Ng SF; Ong WJ ChemSusChem; 2022 Oct; 15(19):e202200857. PubMed ID: 35781794 [TBL] [Abstract][Full Text] [Related]
19. Highly Efficient Additive-Free Dehydrogenation of Neat Formic Acid. Kar S; Rauch M; Leitus G; Ben-David Y; Milstein D Nat Catal; 2021 Mar; 4():193-201. PubMed ID: 37152186 [TBL] [Abstract][Full Text] [Related]
20. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release. Mellmann D; Sponholz P; Junge H; Beller M Chem Soc Rev; 2016 Jul; 45(14):3954-88. PubMed ID: 27119123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]