These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39396191)
1. Methane Production Is More Sensitive to Temperature Increase than Aerobic and Anaerobic Methane Oxidation in Chinese Paddy Soils. Yang WT; Agathokleous E; Wu JH; Chen HY; Wu RJ; Huang HC; Ren BJ; Wen SL; Shen LD; Wang WQ Environ Sci Technol; 2024 Oct; 58(42):18723-18732. PubMed ID: 39396191 [TBL] [Abstract][Full Text] [Related]
2. Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH Fan L; Dippold MA; Thiel V; Ge T; Wu J; Kuzyakov Y; Dorodnikov M Glob Chang Biol; 2022 Jan; 28(2):654-664. PubMed ID: 34653297 [TBL] [Abstract][Full Text] [Related]
3. [Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils]. Zheng Y; Jia Z Wei Sheng Wu Xue Bao; 2013 Feb; 53(2):173-84. PubMed ID: 23627110 [TBL] [Abstract][Full Text] [Related]
4. Research progress on the effects of elevated atmospheric CO Tian MH; Shen LD; Su WC Ying Yong Sheng Tai Xue Bao; 2024 Aug; 35(8):2267-2281. PubMed ID: 39419812 [TBL] [Abstract][Full Text] [Related]
5. Potential role of nitrite-dependent anaerobic methane oxidation in methane consumption and nitrogen removal in Chinese paddy fields. Yang WT; Wang WQ; Shen LD; Bai YN; Liu X; Tian MH; Wang C; Feng YF; Liu Y; Yang YL; Liu JQ; Geng CY Sci Total Environ; 2022 Sep; 838(Pt 3):156534. PubMed ID: 35679939 [TBL] [Abstract][Full Text] [Related]
6. Equal importance of humic acids and nitrate in driving anaerobic oxidation of methane in paddy soils. Bai Y; Wang Y; Shen L; Shang B; Ji Y; Ren B; Yang W; Yang Y; Ma Z; Feng Z Sci Total Environ; 2024 Feb; 912():169311. PubMed ID: 38103608 [TBL] [Abstract][Full Text] [Related]
7. Metabolic coupling between soil aerobic methanotrophs and denitrifiers in rice paddy fields. Chen KH; Feng J; Bodelier PLE; Yang Z; Huang Q; Delgado-Baquerizo M; Cai P; Tan W; Liu YR Nat Commun; 2024 Apr; 15(1):3471. PubMed ID: 38658559 [TBL] [Abstract][Full Text] [Related]
8. [Contribution of anaerobic oxidation of methane to whole methane oxidation]. Lü ZM; Min H; Chen ZY; Lü Q Huan Jing Ke Xue; 2005 Jul; 26(4):13-7. PubMed ID: 16212160 [TBL] [Abstract][Full Text] [Related]
9. The influence of soil temperature, methanogens and methanotrophs on methane emissions from cold waterlogged paddy fields. Xu X; Zhang M; Xiong Y; Yuan J; Shaaban M; Zhou W; Hu R J Environ Manage; 2020 Jun; 264():110421. PubMed ID: 32217313 [TBL] [Abstract][Full Text] [Related]
10. Synergistic effects of warming and humic substances on driving arsenic reduction and methanogenesis in flooded paddy soil. Hemmat-Jou MH; Gao R; Chen G; Liang Y; Li F; Fang L J Hazard Mater; 2024 Sep; 476():134947. PubMed ID: 38908180 [TBL] [Abstract][Full Text] [Related]
11. Carbon availability and microbial activity manipulate the temperature sensitivity of anaerobic degradation in a paddy soil profile. Su R; Wu X; Hu J; Li H; Xiao H; Zhao J; Hu R Environ Res; 2024 Jul; 252(Pt 1):118453. PubMed ID: 38341070 [TBL] [Abstract][Full Text] [Related]
12. Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field. Shen LD; Liu S; Huang Q; Lian X; He ZF; Geng S; Jin RC; He YF; Lou LP; Xu XY; Zheng P; Hu BL Appl Environ Microbiol; 2014 Dec; 80(24):7611-9. PubMed ID: 25261523 [TBL] [Abstract][Full Text] [Related]
13. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Zhang J; Zhou W; Liu B; He J; Shen Q; Zhao FJ Environ Sci Technol; 2015 May; 49(10):5956-64. PubMed ID: 25905768 [TBL] [Abstract][Full Text] [Related]
14. Loss of microbial diversity increases methane emissions and arsenic release in paddy soils. Jiang O; Chen Y; Li C; Yang X; Gustave W; Tang X Sci Total Environ; 2024 Oct; 948():174656. PubMed ID: 38992367 [TBL] [Abstract][Full Text] [Related]
15. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved. Luo D; Meng X; Zheng N; Li Y; Yao H; Chapman SJ Sci Total Environ; 2021 Sep; 788():147773. PubMed ID: 34029806 [TBL] [Abstract][Full Text] [Related]
16. Arsenic Reduces Methane Emissions from Paddy Soils: Insights from Continental Investigation and Laboratory Incubations. Jiang OY; Zhang SY; Zhao XD; Liu ZT; Kappler A; Xu JM; Tang XJ Environ Sci Technol; 2024 Oct; 58(40):17685-17694. PubMed ID: 39314094 [TBL] [Abstract][Full Text] [Related]
17. Coupled anaerobic methane oxidation and metal reduction in soil under elevated CO Xu C; Zhang N; Zhang K; Li S; Xia Q; Xiao J; Liang M; Lei W; He J; Chen G; Ge C; Zheng X; Zhu J; Hu S; Koide RT; Firestone MK; Cheng L Glob Chang Biol; 2023 Aug; 29(16):4670-4685. PubMed ID: 37221551 [TBL] [Abstract][Full Text] [Related]
18. Enhanced anaerobic oxidation of methane with the coexistence of iron oxides and sulfate fertilizer in paddy soil. He Z; Shen J; Zhu Y; Feng J; Pan X Chemosphere; 2023 Jul; 329():138623. PubMed ID: 37030346 [TBL] [Abstract][Full Text] [Related]
19. [Effect of gradual increase of atmospheric CO Huang HC; Jin JH; Shen LD; Tian MH; Liu X; Yang WT; Hu ZH Ying Yong Sheng Tai Xue Bao; 2022 Sep; 33(9):2441-2449. PubMed ID: 36131660 [TBL] [Abstract][Full Text] [Related]
20. [Spatial and temporal characteristics of community structure of nitrite-dependent anaerobic methane-oxidizing bacteria in paddy soil]. Tian MH; Shen LD; Liu X; Yang WT; Jin JH; Yang YL; Liu JQ Ying Yong Sheng Tai Xue Bao; 2022 Jan; 33(1):239-247. PubMed ID: 35224946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]