BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3939625)

  • 1. Altered responding to cholecystokinins and dopaminergic agonists following 6-hydroxydopamine treatment in rats.
    Hsiao S; Katsuura G; Itoh S
    Behav Neurosci; 1985 Oct; 99(5):853-60. PubMed ID: 3939625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity of nucleus accumbens to activities related to cholecystokinins in rats.
    Katsuura G; Itoh S; Hsiao S
    Peptides; 1985; 6(1):91-6. PubMed ID: 3991366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CCK-8 injected into the nucleus accumbens attenuates the supersensitive locomotor response to apomorphine in 6-OHDA and chronic-neuroleptic treated rats.
    Weiss F; Ettenberg A; Koob GF
    Psychopharmacology (Berl); 1989; 99(3):409-15. PubMed ID: 2574480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholecystokinin tetrapeptide, proglumide and open-field behavior in rats.
    Hsiao S; Katsuura G; Itoh S
    Life Sci; 1984 May; 34(22):2165-8. PubMed ID: 6727557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral effects of cholecystokinin and its related peptides in rats.
    Itoh S; Katsuura G
    Prog Clin Biol Res; 1985; 192():139-45. PubMed ID: 2934743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive avoidance deficit following intracerebroventricular administration of cholecystokinin tetrapeptide amide in rats.
    Katsuura G; Itoh S
    Peptides; 1986; 7(5):809-14. PubMed ID: 3797342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blocking of cholecystokinin octapeptide behavioral effects by proglumide.
    Katsuura G; Hsiao S; Itoh S
    Peptides; 1984; 5(3):529-34. PubMed ID: 6089145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cholecystokinin tetra and octa peptides on locomotor activity in mice.
    Takeda Y; Takano Y; Kamiya H
    Jpn J Pharmacol; 1986 Sep; 42(1):145-9. PubMed ID: 3795615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cholecystokinin on apomorphine-induced changes of motility in rats.
    Katsuura G; Itoh S; Rehfeld JF
    Neuropharmacology; 1984 Jul; 23(7A):731-4. PubMed ID: 6089021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracerebroventricular injection of cholecystokinin octapeptide elevates plasma prolactin levels through stimulation of vasoactive intestinal polypeptide.
    Tanimoto K; Tamminga CA; Chase TN; Nilaver G
    Endocrinology; 1987 Jul; 121(1):127-32. PubMed ID: 3297634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma concentrations of cholecystokinin octapeptide and food intake in male rats treated with cholecystokinin octapeptide.
    Lindén A; Uvnäs-Moberg K; Forsberg G; Bednar I; Södersten P
    J Endocrinol; 1989 Apr; 121(1):59-65. PubMed ID: 2565947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholecystokinin and gastrin induce cell contraction in pig ileum by interacting with different receptor subtypes.
    Botella A; Delvaux M; Berry P; Frexinos J; Bueno L
    Gastroenterology; 1992 Mar; 102(3):779-86. PubMed ID: 1537515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sulfated cholecystokinin octapeptide and cholecystokinin tetrapeptide in rat behavior after blockade of nitric oxide synthase by L-NAME.
    Hoły Z; Wiśniewski K
    Rocz Akad Med Bialymst; 1998; 43():250-70. PubMed ID: 9972062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological effects of cholecystokinin octapeptide on identified rat nigrostriatal dopaminergic neurons.
    Freeman AS; Chiodo LA
    Brain Res; 1988 Jan; 439(1-2):266-74. PubMed ID: 3359189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin.
    Freeman AS; Bunney BS
    Brain Res; 1987 Mar; 405(1):46-55. PubMed ID: 3032350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of acetylcholine release by cholecystokinin in striatum: receptor specificity; role of dopaminergic neuronal activity.
    Petkova-Kirova P; Giovannini MG; Kalfin R; Rakovska A
    Brain Res Bull; 2012 Dec; 89(5-6):177-84. PubMed ID: 22981453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microinjection of cholecystokinin into the rat ventral tegmental area potentiates dopamine-induced hypolocomotion.
    Crawley JN
    Synapse; 1989; 3(4):346-55. PubMed ID: 2740993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between striatal and mesolimbic dopamine dysfunction and the nature of circling responses following 6-hydroxydopamine and electrolytic lesions of the ascending dopamine systems of rat brain.
    Costall B; Marsden CD; Naylor RJ; Pycock CJ
    Brain Res; 1976 Dec; 118(1):87-113. PubMed ID: 990957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A behavioural pharmacological study on intracerebroventricularly administered CCK-8 related peptides in mice.
    Hagino Y; Moroji T; Iizuka R
    Neuropeptides; 1989; 13(2):107-13. PubMed ID: 2739882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of monoamine uptake inhibitors and methamphetamine on neostriatal 6-hydroxydopamine (6-OHDA) formation, short-term monoamine depletions and locomotor activity in the rat.
    Marek GJ; Vosmer G; Seiden LS
    Brain Res; 1990 May; 516(1):1-7. PubMed ID: 2142010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.