These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39397512)

  • 1. Conductive filament distribution in nano-scale electrochemical metallization cells.
    Speckbacher M; Rinderle M; Bienek O; Sharp ID; Gagliardi A; Tornow M
    Nanoscale; 2024 Oct; ():. PubMed ID: 39397512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive filament shape in HfO
    Clarke H; Deremo L; Anderson J; Ganguli S; Shamberger PJ
    Nanotechnology; 2020 Feb; 31(7):075706. PubMed ID: 31751315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations.
    Menzel S; Kaupmann P; Waser R
    Nanoscale; 2015 Aug; 7(29):12673-81. PubMed ID: 26150320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SET kinetics of electrochemical metallization cells: influence of counter-electrodes in SiO
    Lübben M; Menzel S; Park SG; Yang M; Waser R; Valov I
    Nanotechnology; 2017 Mar; 28(13):135205. PubMed ID: 28248653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observing Oxygen Vacancy Driven Electroforming in Pt-TiO2-Pt Device via Strong Metal Support Interaction.
    Jang MH; Agarwal R; Nukala P; Choi D; Johnson AT; Chen IW; Agarwal R
    Nano Lett; 2016 Apr; 16(4):2139-44. PubMed ID: 26982325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability effects of lateral filament confinement by nano-scaling the oxide in memristive devices.
    Stasner P; Kopperberg N; Schnieders K; Hennen T; Wiefels S; Menzel S; Waser R; Wouters DJ
    Nanoscale Horiz; 2024 Apr; 9(5):764-774. PubMed ID: 38511616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing Oxygen Vacancy Electromigration and Conductive Filament Formation in TiO
    Tang K; Meng AC; Hui F; Shi Y; Petach T; Hitzman C; Koh AL; Goldhaber-Gordon D; Lanza M; McIntyre PC
    Nano Lett; 2017 Jul; 17(7):4390-4399. PubMed ID: 28604007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural electrode resilience against dielectric damage may be improved by use of highly doped silicon as a conductive material.
    Caldwell R; Sharma R; Takmakov P; Street MG; Solzbacher F; Tathireddy P; Rieth L
    J Neurosci Methods; 2018 Jan; 293():210-225. PubMed ID: 29017900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical metallization switching with a platinum group metal in different oxides.
    Wang Z; Jiang H; Hyung Jang M; Lin P; Ribbe A; Xia Q; Yang JJ
    Nanoscale; 2016 Aug; 8(29):14023-30. PubMed ID: 27166623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic Monte Carlo simulations on electroforming in nanomanipulated conductive bridge random access memory devices.
    Li YC; Xu P; Lv YY; Fa W; Chen S
    Nanoscale; 2024 Jul; 16(28):13562-13570. PubMed ID: 38953142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic simulations of electrochemical metallization cells: mechanisms of ultra-fast resistance switching in nanoscale devices.
    Onofrio N; Guzman D; Strachan A
    Nanoscale; 2016 Aug; 8(29):14037-47. PubMed ID: 27218609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial Triggering of Conductive Filament Growth in Organic Flexible Memristor for High Reliability and Uniformity.
    Lee SH; Park HL; Kim MH; Kang S; Lee SD
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30108-30115. PubMed ID: 31364349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Zr top electrode on tantalum oxide-based electrochemical metallization resistive switching memory: towards synaptic functionalities.
    Raeis-Hosseini N; Chen S; Papavassiliou C; Valov I
    RSC Adv; 2022 May; 12(22):14235-14245. PubMed ID: 35558855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive filament evolution dynamics revealed by cryogenic (1.5 K) multilevel switching of CMOS-compatible Al
    Beilliard Y; Paquette F; Brousseau F; Ecoffey S; Alibart F; Drouin D
    Nanotechnology; 2020 Oct; 31(44):445205. PubMed ID: 32674084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comment on real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte- based ReRAM.
    Valov I; Waser R
    Adv Mater; 2013 Jan; 25(2):162-4. PubMed ID: 23086899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.
    Wang WC; Tsai MC; Yang J; Hsu C; Chen MJ
    ACS Appl Mater Interfaces; 2015 May; 7(19):10228-37. PubMed ID: 25919200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the local temperature of conductive filaments in resistive switching materials.
    Yalon E; Cohen S; Gavrilov A; Ritter D
    Nanotechnology; 2012 Nov; 23(46):465201. PubMed ID: 23093285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer.
    Zhao X; Liu S; Niu J; Liao L; Liu Q; Xiao X; Lv H; Long S; Banerjee W; Li W; Si S; Liu M
    Small; 2017 Sep; 13(35):. PubMed ID: 28234422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallization of Epitaxial VO2 Films by Ionic Liquid Gating through Initially Insulating TiO2 Layers.
    Passarello D; Altendorf SG; Jeong J; Samant MG; Parkin SS
    Nano Lett; 2016 Sep; 16(9):5475-81. PubMed ID: 27479461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Study on Filament Growth Dynamics in Microstructure-Controlled Storage Media of Resistive Switching Memories.
    Xu P; Fa W; Chen S
    ACS Nano; 2023 Jun; 17(11):10511-10520. PubMed ID: 37235757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.