These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39398159)

  • 1. Influence of Supercritical Conditions on Isothermal Adsorption Capacity Calculation of Methane and Model Optimization.
    Li Z; Gao B; Lei W; Ma S; Liu H
    ACS Omega; 2024 Oct; 9(40):41923-41935. PubMed ID: 39398159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of Supercritical CO
    Fan Z; Liu H; Liu J; Xue S; Zhang K; Xu H; Fang H
    ACS Omega; 2023 Nov; 8(46):44195-44211. PubMed ID: 38027326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-scale pore characteristics in coal and their influence on the adsorption capacity of coalbed methane.
    Li Y; Liu W; Song D; Ren Z; Wang H; Guo X
    Environ Sci Pollut Res Int; 2023 Jun; 30(28):72187-72206. PubMed ID: 37166730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Adsorption Characteristics of Deep Coking Coal Based on Molecular Simulation and Experiments.
    Wang Z; Si S; Cui Y; Dai J; Yue J
    ACS Omega; 2023 Jan; 8(3):3129-3147. PubMed ID: 36713693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Effect of Pore Structure on Desorption Hysteresis of Deep Coking Coal under High-Temperature and High-Pressure Conditions.
    Zhang Y; Wang Z; Si S; Yue J
    ACS Omega; 2024 Jan; 9(3):3709-3729. PubMed ID: 38284077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical pore size for micropore filling in coal samples with different rank coals.
    Hong L; Wang W; Gao D; Liu W
    PLoS One; 2022; 17(3):e0264225. PubMed ID: 35275921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Pore Structure and Its Relationship with Methane Adsorption on Medium-High Volatile Bituminous Coal: An Experimental Study Using Nuclear Magnetic Resonance.
    Zhang B; Fu X; Deng Z; Hao M
    J Nanosci Nanotechnol; 2021 Jan; 21(1):515-528. PubMed ID: 33213650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore Structure Characteristics and Adsorption and Desorption Capacity of Coal Rock after Exposure to Clean Fracturing Fluid.
    Zuo W; Zhang W; Liu Y; Han H; Huang C; Jiang W; Mitri H
    ACS Omega; 2022 Jun; 7(25):21407-21417. PubMed ID: 35785274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Tectonic Deformation on the Pore System and Methane Adsorption of Anthracite Coal.
    Zhu M; Jing T; Yuan H; Zhang J
    ACS Omega; 2024 Aug; 9(32):34250-34258. PubMed ID: 39157146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified Dubinin-Astakhov Model for the Accurate Estimation of Supercritical Methane Sorption on Shales.
    Sun Y; Li S; Sun R; Yang S; Liu X
    ACS Omega; 2020 Jul; 5(26):16189-16199. PubMed ID: 32656441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-Nanostructure of Coal and Adsorption-Diffusion Characteristics of Methane.
    Jia T; Liu C; Wei G; Yan J; Zhang Q; Niu L; Liu X; Zhang M; Ju Y; Zhang Y
    J Nanosci Nanotechnol; 2021 Jan; 21(1):422-430. PubMed ID: 33213641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on CO
    Jinzhang J; Lingyi X
    RSC Adv; 2024 Jan; 14(5):3498-3512. PubMed ID: 38259999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal.
    Han S; Zhou X; Zhang J; Xiang W; Xu A
    ACS Omega; 2022 Mar; 7(9):8091-8102. PubMed ID: 35284768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Pore Parameters and Functional Groups in Coal on CO
    Dong K; Zhai Z; Guo A
    ACS Omega; 2021 Dec; 6(48):32395-32407. PubMed ID: 34901591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical CO
    Yang Q; Li W; Jin K
    ACS Omega; 2020 Apr; 5(16):9276-9290. PubMed ID: 32363278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in mineral fraction and pore morphology of coal with acidification treatment: contribution of clay minerals to methane adsorption.
    Wang L; Li Z; Li J; Chen Y; Zhang K; Han X; Xu G
    Environ Sci Pollut Res Int; 2023 Nov; 30(54):114886-114900. PubMed ID: 37875755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Buertai Coal Macromolecular Model and GCMC Simulation of Methane Adsorption in Micropores.
    Yang Z; Yin Z; Xue W; Meng Z; Li Y; Long J; Wang J
    ACS Omega; 2021 May; 6(17):11173-11182. PubMed ID: 34056272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Simulation of the Adsorption Characteristics of Methane in Pores of Coal with Different Metamorphic Degrees.
    Han Q; Deng C; Jin Z; Gao T
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applicability Analysis of Determination Models for Nanopores in Coal Using Low-Pressure CO₂ and N₂ Adsorption Methods.
    Li Y; Song D; Li G; Ji X; Tang J; Lan F; Fan S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):472-483. PubMed ID: 33213646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore structure and mineral composition characteristics of coal slime before and after ashing and the effects on CO
    Kong X; Hu J; Cai Y; Lin X; Zhou Y; He D; Ji P
    Environ Sci Pollut Res Int; 2024 Sep; 31(43):55597-55609. PubMed ID: 39240430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.