These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 39398199)

  • 21. Single-Protein Collapse Determines Phase Equilibria of a Biological Condensate.
    Chou HY; Aksimentiev A
    J Phys Chem Lett; 2020 Jun; 11(12):4923-4929. PubMed ID: 32426986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterotypic electrostatic interactions control complex phase separation of tau and prion into multiphasic condensates and co-aggregates.
    Rai SK; Khanna R; Avni A; Mukhopadhyay S
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2216338120. PubMed ID: 36595668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen-Bonded Network of Water in Phase-Separated Biomolecular Condensates.
    Joshi A; Avni A; Walimbe A; Rai SK; Sarkar S; Mukhopadhyay S
    J Phys Chem Lett; 2024 Aug; 15(30):7724-7734. PubMed ID: 39042834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence-encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology.
    Devarajan DS; Mittal J
    bioRxiv; 2024 Aug; ():. PubMed ID: 39185151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microscopic Origins of Flow Activation Energy in Biomolecular Condensates.
    Yang S; Potoyan DA
    bioRxiv; 2024 Sep; ():. PubMed ID: 39386700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface tension measurement and calculation of model biomolecular condensates.
    Holland J; Castrejón-Pita AA; Tuinier R; Aarts DGAL; Nott TJ
    Soft Matter; 2023 Nov; 19(45):8706-8716. PubMed ID: 37791635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The exchange dynamics of biomolecular condensates.
    Zhang Y; Pyo AGT; Kliegman R; Jiang Y; Brangwynne CP; Stone HA; Wingreen NS
    Elife; 2024 Sep; 12():. PubMed ID: 39320949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence-specific interactions determine viscoelasticity and aging dynamics of protein condensates.
    Alshareedah I; Borcherds WM; Cohen SR; Singh A; Posey AE; Farag M; Bremer A; Strout GW; Tomares DT; Pappu RV; Mittag T; Banerjee PR
    bioRxiv; 2023 Dec; ():. PubMed ID: 37066350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying surface tension and viscosity in biomolecular condensates by FRAP-ID.
    Santamaria A; Hutin S; Doucet CM; Zubieta C; Milhiet PE; Costa L
    Biophys J; 2024 Oct; 123(19):3366-3374. PubMed ID: 39113361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A framework for understanding the functions of biomolecular condensates across scales.
    Lyon AS; Peeples WB; Rosen MK
    Nat Rev Mol Cell Biol; 2021 Mar; 22(3):215-235. PubMed ID: 33169001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing Inhomogeneous Diffusion in the Microenvironments of Phase-Separated Polymers under Confinement.
    Shayegan M; Tahvildari R; Metera K; Kisley L; Michnick SW; Leslie SR
    J Am Chem Soc; 2019 May; 141(19):7751-7757. PubMed ID: 31017394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidics for multiscale studies of biomolecular condensates.
    Erkamp NA; Qi R; Welsh TJ; Knowles TPJ
    Lab Chip; 2022 Dec; 23(1):9-24. PubMed ID: 36269080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational Properties of Polymers at Droplet Interfaces as Model Systems for Disordered Proteins.
    Wang J; Sundaravadivelu Devarajan D; Nikoubashman A; Mittal J
    bioRxiv; 2023 Jul; ():. PubMed ID: 37577555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decoding the physical principles of two-component biomolecular phase separation.
    Zhang Y; Xu B; Weiner BG; Meir Y; Wingreen NS
    Elife; 2021 Mar; 10():. PubMed ID: 33704061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active learning of the thermodynamics-dynamics trade-off in protein condensates.
    An Y; Webb MA; Jacobs WM
    Sci Adv; 2024 Jan; 10(1):eadj2448. PubMed ID: 38181073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomolecular Condensates in Contact with Membranes.
    Mangiarotti A; Dimova R
    Annu Rev Biophys; 2024 Jul; 53(1):319-341. PubMed ID: 38360555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence-specific interactions determine viscoelasticity and aging dynamics of protein condensates.
    Alshareedah I; Borcherds WM; Cohen SR; Singh A; Posey AE; Farag M; Bremer A; Strout GW; Tomares DT; Pappu RV; Mittag T; Banerjee PR
    Nat Phys; 2024 Sep; 20(9):1482-1491. PubMed ID: 39464253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.