These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 39398199)

  • 41. Protein conformation and biomolecular condensates.
    Vazquez DS; Toledo PL; Gianotti AR; Ermácora MR
    Curr Res Struct Biol; 2022; 4():285-307. PubMed ID: 36164646
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biophysical studies of phase separation integrating experimental and computational methods.
    Fawzi NL; Parekh SH; Mittal J
    Curr Opin Struct Biol; 2021 Oct; 70():78-86. PubMed ID: 34144468
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Controlled and orthogonal partitioning of large particles into biomolecular condensates.
    Kelley FM; Ani A; Pinlac EG; Linders B; Favetta B; Barai M; Ma Y; Singh A; Dignon GL; Gu Y; Schuster BS
    bioRxiv; 2024 Jul; ():. PubMed ID: 39071308
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of biomolecular condensate dynamics by signaling.
    Garcia-Cabau C; Salvatella X
    Curr Opin Cell Biol; 2021 Apr; 69():111-119. PubMed ID: 33578289
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for widespread cytoplasmic structuring into mesoscale condensates.
    Keber FC; Nguyen T; Mariossi A; Brangwynne CP; Wühr M
    Nat Cell Biol; 2024 Mar; 26(3):346-352. PubMed ID: 38424273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amino Acid-Dependent Material Properties of Tetrapeptide Condensates.
    Zhang Y; Prasad R; Su S; Lee D; Zhou HX
    bioRxiv; 2024 May; ():. PubMed ID: 38798623
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The liquid-to-solid transition of FUS is promoted by the condensate surface.
    Shen Y; Chen A; Wang W; Shen Y; Ruggeri FS; Aime S; Wang Z; Qamar S; Espinosa JR; Garaizar A; St George-Hyslop P; Collepardo-Guevara R; Weitz DA; Vigolo D; Knowles TPJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301366120. PubMed ID: 37549257
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coacervation-Induced Remodeling of Nanovesicles.
    Mondal S; Cui Q
    J Phys Chem Lett; 2023 May; 14(19):4532-4540. PubMed ID: 37159305
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Model biomolecular condensates have heterogeneous structure quantitatively dependent on the interaction profile of their constituent macromolecules.
    Shillcock JC; Lagisquet C; Alexandre J; Vuillon L; Ipsen JH
    Soft Matter; 2022 Sep; 18(35):6674-6693. PubMed ID: 36004748
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Defining basic rules for hardening influenza A virus liquid condensates.
    Etibor TA; Vale-Costa S; Sridharan S; Brás D; Becher I; Mello VH; Ferreira F; Alenquer M; Savitski MM; Amorim MJ
    Elife; 2023 Apr; 12():. PubMed ID: 37013374
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Active microrheology of protein condensates using colloidal probe-AFM.
    Li X; van der Gucht J; Erni P; de Vries R
    J Colloid Interface Sci; 2023 Feb; 632(Pt B):357-366. PubMed ID: 36436394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-Assembling Polypeptides in Complex Coacervation.
    Sathyavageeswaran A; Bonesso Sabadini J; Perry SL
    Acc Chem Res; 2024 Feb; 57(3):386-398. PubMed ID: 38252962
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity.
    Strom AR; Kim Y; Zhao H; Chang YC; Orlovsky ND; Košmrlj A; Storm C; Brangwynne CP
    Cell; 2024 Sep; 187(19):5282-5297.e20. PubMed ID: 39168125
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993212
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mesoscale molecular assembly is favored by the active, crowded cytoplasm.
    Shu T; Mitra G; Alberts J; Viana MP; Levy ED; Hocky GM; Holt LJ
    bioRxiv; 2023 Sep; ():. PubMed ID: 37781612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations.
    Zheng W; Dignon GL; Jovic N; Xu X; Regy RM; Fawzi NL; Kim YC; Best RB; Mittal J
    J Phys Chem B; 2020 Dec; 124(51):11671-11679. PubMed ID: 33302617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Splicing regulation through biomolecular condensates and membraneless organelles.
    Giudice J; Jiang H
    Nat Rev Mol Cell Biol; 2024 Sep; 25(9):683-700. PubMed ID: 38773325
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.
    Scholl D; Deniz AA
    J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA-protamine condensates under low salt conditions: molecular dynamics simulation with a simple coarse-grained model focusing on electrostatic interactions.
    Jang YH; Raspaud E; Lansac Y
    Nanoscale Adv; 2023 Sep; 5(18):4798-4808. PubMed ID: 37705794
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates.
    Guo G; Wang X; Zhang Y; Li T
    Acta Biochim Biophys Sin (Shanghai); 2023 Jul; 55(7):1119-1132. PubMed ID: 37464880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.