These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 39399380)
1. Automated pipeline for denoising, missing data processing, and feature extraction for signals acquired via wearable devices in multiple sclerosis and amyotrophic lateral sclerosis applications. Cossu L; Cappon G; Facchinetti A Front Digit Health; 2024; 6():1402943. PubMed ID: 39399380 [TBL] [Abstract][Full Text] [Related]
2. Continuous Monitoring of Heart Rate Variability in Free-Living Conditions Using Wearable Sensors: Exploratory Observational Study. Gaur P; Temple DS; Hegarty-Craver M; Boyce MD; Holt JR; Wenger MF; Preble EA; Eckhoff RP; McCombs MS; Davis-Wilson HC; Walls HJ; Dausch DE JMIR Form Res; 2024 Aug; 8():e53977. PubMed ID: 39110968 [TBL] [Abstract][Full Text] [Related]
3. FLIRT: A feature generation toolkit for wearable data. Föll S; Maritsch M; Spinola F; Mishra V; Barata F; Kowatsch T; Fleisch E; Wortmann F Comput Methods Programs Biomed; 2021 Nov; 212():106461. PubMed ID: 34736174 [TBL] [Abstract][Full Text] [Related]
4. Motion Artifact Reduction in Electrocardiogram Signals Through a Redundant Denoising Independent Component Analysis Method for Wearable Health Care Monitoring Systems: Algorithm Development and Validation. Castaño Usuga FA; Gissel C; Hernández AM JMIR Med Inform; 2022 Nov; 10(11):e40826. PubMed ID: 36274196 [TBL] [Abstract][Full Text] [Related]
5. Adaptive and self-learning Bayesian filtering algorithm to statistically characterize and improve signal-to-noise ratio of heart-rate data in wearable devices. Cossu L; Cappon G; Facchinetti A J R Soc Interface; 2024 Sep; 21(218):20240222. PubMed ID: 39226927 [TBL] [Abstract][Full Text] [Related]
6. Advancing mHealth Research in Low-Resource Settings: Young Women's Insights and Implementation Challenges with Wearable Smartwatch Devices in Uganda. Swahn MH; Gittner KB; Lyons MJ; Nielsen K; Mobley K; Culbreth R; Palmier J; Johnson NE; Matte M; Nabulya A Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275502 [TBL] [Abstract][Full Text] [Related]
7. Using the Redundant Convolutional Encoder-Decoder to Denoise QRS Complexes in ECG Signals Recorded with an Armband Wearable Device. Reljin N; Lazaro J; Hossain MB; Noh YS; Cho CH; Chon KH Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824420 [TBL] [Abstract][Full Text] [Related]
8. Validation of automated pipeline for the assessment of a motor speech disorder in amyotrophic lateral sclerosis (ALS). Simmatis LE; Robin J; Pommée T; McKinlay S; Sran R; Taati N; Truong J; Koyani B; Yunusova Y Digit Health; 2023; 9():20552076231219102. PubMed ID: 38144173 [TBL] [Abstract][Full Text] [Related]
10. Unsupervised Feature Extraction From Raw Data for Gesture Recognition With Wearable Ultralow-Power Ultrasound. Vostrikov S; Anderegg M; Benini L; Cossettini A IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jul; 71(7):831-841. PubMed ID: 38787674 [TBL] [Abstract][Full Text] [Related]
11. Modulation Spectral Signal Representation for Quality Measurement and Enhancement of Wearable Device Data: A Technical Note. Tiwari A; Cassani R; Kshirsagar S; Tobon DP; Zhu Y; Falk TH Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746361 [TBL] [Abstract][Full Text] [Related]
12. Intelligent Bladder Volume Monitoring for Wearable Ultrasound Devices: Enhancing Accuracy Through Deep Learning-Based Coarse-to-Fine Shape Estimation. Lee K; Lee MH; Kang D; Kim S; Chang JH; Oh SJ; Hwang JY IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jul; 71(7):775-785. PubMed ID: 38190679 [TBL] [Abstract][Full Text] [Related]
13. Denoising Wearable Armband ECG Data Using the Variable Frequency Complex Demodulation Technique. Hossain MB; Lazaro J; Noh Y; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():592-595. PubMed ID: 33018058 [TBL] [Abstract][Full Text] [Related]
14. Multi-Stream Convolutional Neural Network-Based Wearable, Flexible Bionic Gesture Surface Muscle Feature Extraction and Recognition. Liu W; Lu B Front Bioeng Biotechnol; 2022; 10():833793. PubMed ID: 35310001 [TBL] [Abstract][Full Text] [Related]
15. Distance-Based Detection of Cough, Wheeze, and Breath Sounds on Wearable Devices. Xue B; Shi W; Chotirmall SH; Koh VCA; Ang YY; Tan RX; Ser W Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336338 [TBL] [Abstract][Full Text] [Related]
16. Wearable Sensor Technologies to Assess Motor Functions in People With Multiple Sclerosis: Systematic Scoping Review and Perspective. Woelfle T; Bourguignon L; Lorscheider J; Kappos L; Naegelin Y; Jutzeler CR J Med Internet Res; 2023 Jul; 25():e44428. PubMed ID: 37498655 [TBL] [Abstract][Full Text] [Related]
17. Usability and Accuracy of a Smartwatch for the Assessment of Physical Activity in the Elderly Population: Observational Study. Martinato M; Lorenzoni G; Zanchi T; Bergamin A; Buratin A; Azzolina D; Gregori D JMIR Mhealth Uhealth; 2021 May; 9(5):e20966. PubMed ID: 33949953 [TBL] [Abstract][Full Text] [Related]
18. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising. Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Wearable and Clinical Devices for Acquisition of Peripheral Nervous System Signals. Bizzego A; Gabrieli G; Furlanello C; Esposito G Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33260880 [TBL] [Abstract][Full Text] [Related]
20. Signal quality and patient experience with wearable devices for epilepsy management. Nasseri M; Nurse E; Glasstetter M; Böttcher S; Gregg NM; Laks Nandakumar A; Joseph B; Pal Attia T; Viana PF; Bruno E; Biondi A; Cook M; Worrell GA; Schulze-Bonhage A; Dümpelmann M; Freestone DR; Richardson MP; Brinkmann BH Epilepsia; 2020 Nov; 61 Suppl 1():S25-S35. PubMed ID: 32497269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]