These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 39400855)

  • 1. Comparing on-line continuous movement decoding with joints unconstrained and constrained based on a generic musculoskeletal model.
    Pan L; Ding Z; Zhao H; Mu R; Li J
    Med Biol Eng Comput; 2024 Oct; ():. PubMed ID: 39400855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myoelectric Control Based on A Generic Musculoskeletal Model: Towards A Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang HH
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; ():. PubMed ID: 29994312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myoelectric Control Based on a Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1435-1442. PubMed ID: 29985153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Reliable Multi-User EMG Interface Based on A Generic-Musculoskeletal Model against Loading Weight Changes
    Pan L; Harmody A; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2104-2107. PubMed ID: 30440818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task.
    Crouch DL; Huang HH
    J Neural Eng; 2017 Jun; 14(3):036008. PubMed ID: 28220759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing Reinforcement Learning Agents and Supervised Learning Neural Networks for EMG-Based Decoding of Continuous Movements.
    Berman J; Hinson R; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6297-6300. PubMed ID: 34892553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMG-Based Real-Time Linear-Nonlinear Cascade Regression Decoding of Shoulder, Elbow, and Wrist Movements in Able-Bodied Persons and Stroke Survivors.
    Liu J; Ren Y; Xu D; Kang SH; Zhang LQ
    IEEE Trans Biomed Eng; 2020 May; 67(5):1272-1281. PubMed ID: 31425016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMG-Based Continuous and Simultaneous Estimation of Arm Kinematics in Able-Bodied Individuals and Stroke Survivors.
    Liu J; Kang SH; Xu D; Ren Y; Lee SJ; Zhang LQ
    Front Neurosci; 2017; 11():480. PubMed ID: 28890685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple EMG-driven musculoskeletal model enables consistent control performance during path tracing tasks.
    Crouch D; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1-4. PubMed ID: 28268266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Musculoskeletal model predicts multi-joint wrist and hand movement from limited EMG control signals.
    Crouch DL; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1132-5. PubMed ID: 26736465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous and Proportional Control of Wrist and Hand Movements Based on a Neural-Driven Musculoskeletal Model.
    Li J; Yue S; Pan L
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3999-4007. PubMed ID: 37815968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.
    Crouch DL; Huang H
    J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time, simultaneous myoelectric control using force and position-based training paradigms.
    Ameri A; Scheme EJ; Kamavuako EN; Englehart KB; Parker PA
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):279-87. PubMed ID: 24058007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble Learning Method for the Continuous Decoding of Hand Joint Angles.
    Wang H; Tao Q; Zhang X
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable high-density EMG sleeve for complex hand gesture classification and continuous joint angle estimation.
    Tacca N; Dunlap C; Donegan SP; Hardin JO; Meyers E; Darrow MJ; Colachis Iv S; Gillman A; Friedenberg DA
    Sci Rep; 2024 Aug; 14(1):18564. PubMed ID: 39122791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinating two degrees of freedom during human arm movement: load and speed invariance of relative joint torques.
    Gottlieb GL; Song Q; Hong DA; Corcos DM
    J Neurophysiol; 1996 Nov; 76(5):3196-206. PubMed ID: 8930266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Reinforcement Learning to Estimate Human Joint Moments From Electromyography or Joint Kinematics: An Alternative Solution to Musculoskeletal-Based Biomechanics.
    Wu W; Saul KR; Huang HH
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33332536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.