These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 39402030)

  • 1. A machine learning model reveals expansive downregulation of ligand-receptor interactions that enhance lymphocyte infiltration in melanoma with developed resistance to immune checkpoint blockade.
    Sahni S; Wang B; Wu D; Dhruba SR; Nagy M; Patkar S; Ferreira I; Day CP; Wang K; Ruppin E
    Nat Commun; 2024 Oct; 15(1):8867. PubMed ID: 39402030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deactivation of ligand-receptor interactions enhancing lymphocyte infiltration drives melanoma resistance to Immune Checkpoint Blockade.
    Sahni S; Wang B; Wu D; Dhruba SR; Nagy M; Patkar S; Ferreira I; Wang K; Ruppin E
    bioRxiv; 2023 Sep; ():. PubMed ID: 37886558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma.
    Lepletier A; Madore J; O'Donnell JS; Johnston RL; Li XY; McDonald E; Ahern E; Kuchel A; Eastgate M; Pearson SA; Mallardo D; Ascierto PA; Massi D; Merelli B; Mandala M; Wilmott JS; Menzies AM; Leduc C; Stagg J; Routy B; Long GV; Scolyer RA; Bald T; Waddell N; Dougall WC; Teng MWL; Smyth MJ
    Clin Cancer Res; 2020 Jul; 26(14):3671-3681. PubMed ID: 32345648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TUBA1C orchestrates the immunosuppressive tumor microenvironment and resistance to immune checkpoint blockade in clear cell renal cell carcinoma.
    Li J; Chen M; Tong M; Cao Q
    Front Immunol; 2024; 15():1457691. PubMed ID: 39301023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the immunologically "cold" tumor microenvironment after treatment with immune checkpoint inhibitors utilizing PET imaging of CD4 + and CD8 + T cells in breast cancer mouse models.
    Lu Y; Houson HA; Gallegos CA; Mascioni A; Jia F; Aivazian A; Song PN; Lynch SE; Napier TS; Mansur A; Larimer BM; Lapi SE; Hanker AB; Sorace AG
    Breast Cancer Res; 2024 Jun; 26(1):104. PubMed ID: 38918836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell Profiling of Sarcomas from Archival Tissue Reveals Programs Associated with Resistance to Immune Checkpoint Blockade.
    Luthria K; Shah P; Caldwell B; Melms JC; Abuzaid S; Jakubikova V; Brodtman DZ; Bose S; Amin AD; Ho P; Biermann J; Tagore S; Ingham M; Schwartz GK; Izar B
    Clin Cancer Res; 2024 Oct; 30(19):4530-4541. PubMed ID: 39083415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myeloid-T cell interplay and cell state transitions associated with checkpoint inhibitor response in melanoma.
    Schlenker R; Schwalie PC; Dettling S; Huesser T; Irmisch A; Mariani M; Martínez Gómez JM; Ribeiro A; Limani F; Herter S; Yángüez E; Hoves S; Somandin J; Siebourg-Polster J; Kam-Thong T; de Matos IG; Umana P; Dummer R; Levesque MP; Bacac M
    Med; 2024 Jul; 5(7):759-779.e7. PubMed ID: 38593812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early disappearance of tumor antigen-reactive T cells from peripheral blood correlates with superior clinical outcomes in melanoma under anti-PD-1 therapy.
    Bochem J; Zelba H; Spreuer J; Amaral T; Wagner NB; Gaissler A; Pop OT; Thiel K; Yurttas C; Soffel D; Forchhammer S; Sinnberg T; Niessner H; Meier F; Terheyden P; Königsrainer A; Garbe C; Flatz L; Pawelec G; Eigentler TK; Löffler MW; Weide B; Wistuba-Hamprecht K
    J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34933966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational pipeline for identifying gene targets and signalling pathways in cancer cells to improve lymphocyte infiltration and immune checkpoint therapy efficacy.
    Nasr S; Li L; Asad M; Moridi M; Wang M; Zemp FJ; Mahoney DJ; Wang E
    EBioMedicine; 2024 Jun; 104():105167. PubMed ID: 38805852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer.
    Lal JC; Townsend MG; Mehta AK; Oliwa M; Miller E; Sotayo A; Cheney E; Mittendorf EA; Letai A; Guerriero JL
    Breast Cancer Res; 2021 Aug; 23(1):83. PubMed ID: 34353349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of PD-1 Blockade Efficacy and Elimination of Immune-Related Gastrointestinal Adverse Effect by mTOR Inhibitor.
    Bai X; Wang X; Ma G; Song J; Liu X; Wu X; Zhao Y; Liu X; Liu Z; Zhang W; Zhao X; Zheng Z; Jing J; Shi H
    Front Immunol; 2021; 12():793831. PubMed ID: 34987517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise Training Improves Tumor Control by Increasing CD8
    Gomes-Santos IL; Amoozgar Z; Kumar AS; Ho WW; Roh K; Talele NP; Curtis H; Kawaguchi K; Jain RK; Fukumura D
    Cancer Immunol Res; 2021 Jul; 9(7):765-778. PubMed ID: 33839688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner.
    Zhang QF; Li J; Jiang K; Wang R; Ge JL; Yang H; Liu SJ; Jia LT; Wang L; Chen BL
    Theranostics; 2020; 10(23):10619-10633. PubMed ID: 32929370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell Transcriptomic Analysis Reveals a Tumor-Reactive T Cell Signature Associated With Clinical Outcome and Immunotherapy Response In Melanoma.
    Yan M; Hu J; Ping Y; Xu L; Liao G; Jiang Z; Pang B; Sun S; Zhang Y; Xiao Y; Li X
    Front Immunol; 2021; 12():758288. PubMed ID: 34804045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. uPAR
    Porcelli L; Guida M; De Summa S; Di Fonte R; De Risi I; Garofoli M; Caputo M; Negri A; Strippoli S; Serratì S; Azzariti A
    J Immunother Cancer; 2021 May; 9(5):. PubMed ID: 33972390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high OXPHOS CD8 T cell subset is predictive of immunotherapy resistance in melanoma patients.
    Li C; Phoon YP; Karlinsey K; Tian YF; Thapaliya S; Thongkum A; Qu L; Matz AJ; Cameron M; Cameron C; Menoret A; Funchain P; Song JM; Diaz-Montero CM; Tamilselvan B; Golden JB; Cartwright M; Rodriguez A; Bonin C; Vella A; Zhou B; Gastman BR
    J Exp Med; 2022 Jan; 219(1):. PubMed ID: 34807232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive analysis of immune infiltration in the tumor microenvironment of osteosarcoma.
    Yang H; Zhao L; Zhang Y; Li FF
    Cancer Med; 2021 Aug; 10(16):5696-5711. PubMed ID: 34258887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the vascular endothelial growth factor receptor-1 by the monoclonal antibody D16F7 to increase the activity of immune checkpoint inhibitors against cutaneous melanoma.
    Lacal PM; Atzori MG; Ruffini F; Scimeca M; Bonanno E; Cicconi R; Mattei M; Bernardini R; D'Atri S; Tentori L; Graziani G
    Pharmacol Res; 2020 Sep; 159():104957. PubMed ID: 32485280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miRNA as a Modulator of Immunotherapy and Immune Response in Melanoma.
    Nguyen MT; Luo YH; Li AL; Tsai JC; Wu KL; Chung PJ; Ma N
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells.
    De Henau O; Rausch M; Winkler D; Campesato LF; Liu C; Cymerman DH; Budhu S; Ghosh A; Pink M; Tchaicha J; Douglas M; Tibbitts T; Sharma S; Proctor J; Kosmider N; White K; Stern H; Soglia J; Adams J; Palombella VJ; McGovern K; Kutok JL; Wolchok JD; Merghoub T
    Nature; 2016 Nov; 539(7629):443-447. PubMed ID: 27828943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.