These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 39403067)

  • 1. Specialized gray matter segmentation via a generative adversarial network: application on brain white matter hyperintensities classification.
    Bawil MB; Shamsi M; Bavil AS; Danishvar S
    Front Neurosci; 2024; 18():1416174. PubMed ID: 39403067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.
    Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I
    Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.
    Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A
    Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities.
    Ling Y; Jouvent E; Cousyn L; Chabriat H; De Guio F
    Neuroinformatics; 2018 Apr; 16(2):269-281. PubMed ID: 29594711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of white matter hyperintensities on
    Oh KT; Kim D; Ye BS; Lee S; Yun M; Yoo SK
    Eur J Nucl Med Mol Imaging; 2021 Oct; 48(11):3422-3431. PubMed ID: 33693968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Disease Segmentation of Gliomas and White Matter Hyperintensities in the BraTS Data Using a 3D Convolutional Neural Network.
    Rudie JD; Weiss DA; Saluja R; Rauschecker AM; Wang J; Sugrue L; Bakas S; Colby JB
    Front Comput Neurosci; 2019; 13():84. PubMed ID: 31920609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated White Matter Hyperintensity Detection in Multiple Sclerosis Using 3D T2 FLAIR.
    Zhong Y; Utriainen D; Wang Y; Kang Y; Haacke EM
    Int J Biomed Imaging; 2014; 2014():239123. PubMed ID: 25136355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator.
    Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S
    Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging.
    Igwe KC; Lao PJ; Vorburger RS; Banerjee A; Rivera A; Chesebro A; Laing K; Manly JJ; Brickman AM
    Magn Reson Imaging; 2022 Jan; 85():71-79. PubMed ID: 34662699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of three freely available methods for extracting white matter hyperintensities: FreeSurfer, UBO Detector, and BIANCA.
    Hotz I; Deschwanden PF; Liem F; Mérillat S; Malagurski B; Kollias S; Jäncke L
    Hum Brain Mapp; 2022 Apr; 43(5):1481-1500. PubMed ID: 34873789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of Cerebral Small Vessel Diseases-White Matter Hyperintensities Based on a Deep Learning System.
    Shan W; Duan Y; Zheng Y; Wu Z; Chan SW; Wang Q; Gao P; Liu Y; He K; Wang Y
    Front Med (Lausanne); 2021; 8():681183. PubMed ID: 34901045
    [No Abstract]   [Full Text] [Related]  

  • 13. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.
    Conte GM; Weston AD; Vogelsang DC; Philbrick KA; Cai JC; Barbera M; Sanvito F; Lachance DH; Jenkins RB; Tobin WO; Eckel-Passow JE; Erickson BJ
    Radiology; 2021 May; 299(2):313-323. PubMed ID: 33687284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.
    Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T
    Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-Supervised Learning in Medical MRI Segmentation: Brain Tissue with White Matter Hyperintensity Segmentation Using FLAIR MRI.
    Rieu Z; Kim J; Kim RE; Lee M; Lee MK; Oh SW; Wang SM; Kim NY; Kang DW; Lim HK; Kim D
    Brain Sci; 2021 May; 11(6):. PubMed ID: 34071634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UBO Detector - A cluster-based, fully automated pipeline for extracting white matter hyperintensities.
    Jiang J; Liu T; Zhu W; Koncz R; Liu H; Lee T; Sachdev PS; Wen W
    Neuroimage; 2018 Jul; 174():539-549. PubMed ID: 29578029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.
    Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE
    Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmenting white matter hyperintensities on isotropic three-dimensional Fluid Attenuated Inversion Recovery magnetic resonance images: Assessing deep learning tools on a Norwegian imaging database.
    Røvang MS; Selnes P; MacIntosh BJ; Rasmus Groote I; Pålhaugen L; Sudre C; Fladby T; Bjørnerud A
    PLoS One; 2023; 18(8):e0285683. PubMed ID: 37616243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Segmentation of MRI White Matter Hyperintensities in 8421 Patients with Acute Ischemic Stroke.
    Kim H; Ryu WS; Schellingerhout D; Park J; Chung J; Jeong SW; Gwak DS; Kim BJ; Kim JT; Hong KS; Lee KB; Park TH; Park JM; Kang K; Cho YJ; Lee BC; Yu KH; Oh MS; Lee SJ; Cha JK; Kim DH; Lee J; Park MS; Bae HJ; Kim DE
    AJNR Am J Neuroradiol; 2024 Dec; 45(12):1885-1894. PubMed ID: 39013565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based grading of white matter hyperintensities enables identification of potential markers in multi-sequence MRI data.
    Mu S; Lu W; Yu G; Zheng L; Qiu J
    Comput Methods Programs Biomed; 2024 Jan; 243():107904. PubMed ID: 37924768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.