These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 39404057)

  • 1. Dual decoding of cell types and gene expression in spatial transcriptomics with PANDA.
    Wang MG; Chen L; Zhang XF
    Nucleic Acids Res; 2024 Nov; 52(20):12173-12190. PubMed ID: 39404057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SpatialPrompt: spatially aware scalable and accurate tool for spot deconvolution and domain identification in spatial transcriptomics.
    Swain AK; Pandit V; Sharma J; Yadav P
    Commun Biol; 2024 May; 7(1):639. PubMed ID: 38796505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DestVI identifies continuums of cell types in spatial transcriptomics data.
    Lopez R; Li B; Keren-Shaul H; Boyeau P; Kedmi M; Pilzer D; Jelinski A; Yofe I; David E; Wagner A; Ergen C; Addadi Y; Golani O; Ronchese F; Jordan MI; Amit I; Yosef N
    Nat Biotechnol; 2022 Sep; 40(9):1360-1369. PubMed ID: 35449415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially informed cell-type deconvolution for spatial transcriptomics.
    Ma Y; Zhou X
    Nat Biotechnol; 2022 Sep; 40(9):1349-1359. PubMed ID: 35501392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
    Sang-Aram C; Browaeys R; Seurinck R; Saeys Y
    Elife; 2024 May; 12():. PubMed ID: 38787371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive comparison on cell-type composition inference for spatial transcriptomics data.
    Chen J; Liu W; Luo T; Yu Z; Jiang M; Wen J; Gupta GP; Giusti P; Zhu H; Yang Y; Li Y
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35753702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution.
    Liao J; Qian J; Fang Y; Chen Z; Zhuang X; Zhang N; Shao X; Hu Y; Yang P; Cheng J; Hu Y; Yu L; Yang H; Zhang J; Lu X; Shao L; Wu D; Gao Y; Chen H; Fan X
    Nat Commun; 2022 Oct; 13(1):6498. PubMed ID: 36310179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering cell-cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network.
    Yang W; Wang P; Xu S; Wang T; Luo M; Cai Y; Xu C; Xue G; Que J; Ding Q; Jin X; Yang Y; Pang F; Pang B; Lin Y; Nie H; Xu Z; Ji Y; Jiang Q
    Nat Commun; 2024 Aug; 15(1):7101. PubMed ID: 39155292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STIE: Single-cell level deconvolution, convolution, and clustering in in situ capturing-based spatial transcriptomics.
    Zhu S; Kubota N; Wang S; Wang T; Xiao G; Hoshida Y
    Nat Commun; 2024 Aug; 15(1):7559. PubMed ID: 39214995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing.
    Sun D; Liu Z; Li T; Wu Q; Wang C
    Nucleic Acids Res; 2022 Apr; 50(7):e42. PubMed ID: 35253896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks.
    Li Y; Luo Y
    Genome Biol; 2024 Aug; 25(1):206. PubMed ID: 39103939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data.
    Liu Y; Li N; Qi J; Xu G; Zhao J; Wang N; Huang X; Jiang W; Wei H; Justet A; Adams TS; Homer R; Amei A; Rosas IO; Kaminski N; Wang Z; Yan X
    Genome Biol; 2024 Oct; 25(1):271. PubMed ID: 39402626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics.
    Li C; Chan TF; Yang C; Lin Z
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37862237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encoding Method of Single-cell Spatial Transcriptomics Sequencing.
    Zhou Y; Jia E; Pan M; Zhao X; Ge Q
    Int J Biol Sci; 2020; 16(14):2663-2674. PubMed ID: 32792863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing transcriptomic heterogeneity of single-cell RNASeq data by bulk-level gene expression data.
    Tiong KL; Luzhbin D; Yeang CH
    BMC Bioinformatics; 2024 Jun; 25(1):209. PubMed ID: 38867193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning.
    Laubscher E; Wang X; Razin N; Dougherty T; Xu RJ; Ombelets L; Pao E; Graf W; Moffitt JR; Yue Y; Van Valen D
    Cell Syst; 2024 May; 15(5):475-482.e6. PubMed ID: 38754367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scDOT: optimal transport for mapping senescent cells in spatial transcriptomics.
    Nguyen ND; Rosas L; Khaliullin T; Jiang P; Hasanaj E; Ovando-Ricardez JA; Bueno M; Rahman I; Pryhuber GS; Li D; Ma Q; Finkel T; Königshoff M; Eickelberg O; Rojas M; Mora AL; Lugo-Martinez J; Bar-Joseph Z
    Genome Biol; 2024 Nov; 25(1):288. PubMed ID: 39516853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.